纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 15-22.doi: 10.13475/j.fzxb.20191000408

• 纤维材料 • 上一篇    下一篇

纤维基介孔SiO2药物载体的构建及其释药性能

段红梅, 汪希铭, 黄子欣, 高晶(), 王璐   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2019-10-08 修回日期:2020-01-20 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 高晶
  • 作者简介:段红梅(1994—),女,硕士生。主要研究方向为纺织生物材料。
  • 基金资助:
    国家卫生计生委重大疾病防治科技行动计划专项(2017ZX01001-S22)

Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier

DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing(), WANG Lu   

  1. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2019-10-08 Revised:2020-01-20 Online:2020-07-15 Published:2020-07-23
  • Contact: GAO Jing

摘要:

为研究纤维基载药介孔SiO2纳米粒子的释药性能,采用溶胶-凝胶法制备介孔SiO2,并采用静电纺丝技术制备了负载介孔SiO2的聚己内酯(PCL)纤维膜,在介孔SiO2纳米粒子中装载抗菌药物盐酸环丙沙星,于酸性条件下分别探讨了盐酸环丙沙星在纳米粒子和复合纤维膜中的释放性能及释放机制,并对2种药物释放模型进行动力学研究。结果表明:介孔SiO2纳米粒子的成型受pH值影响较大,在可成型范围内,随着pH值的增大,纳米粒子的粒径逐渐增大;随着介孔SiO2比例的增加,PCL复合纤维的细度逐渐下降;盐酸环丙沙星在单独纳米粒子和复合纤维膜中的释放都具有初始释放速率大,后期释放缓慢的特点,12 h内在2种载体中的累积释放率分别可达到55.51%和16.53%;扩散是药物在2种载体中释放的主要机制。

关键词: 介孔二氧化硅, 纳米纤维膜, 盐酸环丙沙星, 载药, 药物释放

Abstract:

In order to study the drug releasing performance of fiber-based mesoporous SiO2, mesoporous SiO2 nanoparticles was prepared using sol-gel method, and the polycaprolactone (PCL) fiber membranes loaded with mesoporous SiO2 nanoparticles were prepared by electrospinning. The antibacterial drug ciprofloxacin hydrochloride was loaded into mesoporous SiO2 nanoparticles, and the releasing properties and releasing mechanism of ciprofloxacin hydrochloride in individual nanoparticles and composite fiber membranes were investigated under acidic conditions. The results show that the formation of mesoporous SiO2 nanoparticles is greatly affected by pH value. Within the moldable range, the particle size of the nanoparticles increases with increasing pH value. As the proportion of mesoporous SiO2 nanoparticles increases, the fineness of PCL composite fibers gradually decreases. The release of ciprofloxacin hydrochloride in individual nanoparticles and composite fiber membranes has a large initial release rate and a slow release in the later stage, the cumulative release rate in the two carriers within 12 h reaches 55.51% and 16.53%, respectively. The results of kinetic studies on the two drug release models indicate that diffusion is the main mechanism of drug release.

Key words: mesoporous silica, nanofiber membrane, ciprofloxacin hydrochloride, drug loading, drug release

中图分类号: 

  • TS101.4

图1

不同pH值条件下反应得到的MSNs的TEM照片"

图2

MSNs在550 ℃焙烧前后的红外光谱图"

图3

MSNs的小角X射线衍射图"

图4

MSNs的氮气吸脱附等温线和孔径分布图"

图5

Cip在水溶液和pH=5.4的PBS缓冲液中的标准曲线"

图6

药物溶液质量浓度对MSNs包封率和载药量的影响"

图7

不同MSNs质量分数Cip-MSNs/PCL复合纤维膜的SEM照片"

图8

Cip-MSNs/PCL复合纤维膜的EDX图谱"

图9

不同药物载体中Cip的释放曲线"

图10

不同载体中药物Cip释放动力学模型拟合"

[1] MOSTAFALU P, KIAEE G, GIATSIDIS G, et al. A textile dressing for temporal and dosage controlled drug delivery[J]. Advanced Functional Materials, 2017,27(41):10.
[2] KIAEE G, MOSTAFALU P, SAMANDARI M, et al. A pH-mediated electronic wound dressing for controlled drug delivery[J]. Advanced Healthcare Materials, 2018,7(18):8.
[3] MOSTAFALU P, TAMAYOL A, RAHIMI R, et al. Smart bandage for monitoring and treatment of chronic wounds[J]. Small, 2018,14(33):9.
[4] 苏金玲. 湿性敷料在慢性伤口中的应用研究进展[J]. 微创医学, 2019,14(3):364-366.
SU Jinling. Progress in the application of wet dressings in chronic wounds[J]. Minimally Invasive Medicine, 2019,14(3):364-366.
[5] VALLET-REGI M, RAMILA A, DELREAL R P, et al. A new property of MCM-41: drug delivery system[J]. Chemistry of Materials, 2001,13(2):308-311.
[6] LI H, KE J, LI H T, et al. Mesoporous silicas templated by heterocyclic amino acid derivatives: biomimetic synjournal and drug release application[J]. Materials Science & Engineering C: Materials for Biological Applications, 2018,93:407-418.
doi: 10.1016/j.msec.2018.07.081 pmid: 30274073
[7] 姚云飞, 朱海霖, 冯新星, 等. 介孔硅载银抗菌剂的结构及其抗菌性能[J]. 纺织学报, 2012,33(2):80-84.
YAO Yunfei, ZHU Hailing, FENG Xinxing, et al. Structure and antibacterial performance of silver-supportedmesoporous silica antibacterial agent[J]. Journal of Textile Research, 2012,33(2):80-84.
[8] 孙斌, 陈建勇, 周岚, 等. 载银介孔SBA-15抗菌剂的制备及表征[J]. 纺织学报, 2011,32(6):104-108.
SUN Bin, CHEN Jianyong, ZHOU Lan, et al. Preparation and characterization of Ag loaded mesoporous SBA-15 antibacterial agent and its characterization[J]. Journal of Textile Research, 2011,32(6):104-108.
[9] AGHAEI H, NOURBAKHSH A A, KARBASI S, et al. Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery[J]. Ceramics International, 2014,40(5):7355-7362.
[10] 康卫民, 范兰兰, 邓南平, 等. 静电纺丝多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017,38(11):168-176.
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017,38(11):168-176.
[11] TAN L, HU J L, ZHAO H F. Design of bilayered nanofibrous mats for wound dressing using an electrospinning technique[J]. Materials Letters, 2015,156:46-49.
[12] DASHDORJ U, REYES M K, UNNITHAN A R, et al. Fabrication and characterization of electrospun zein/Ag nanocomposite mats for wound dressing applications[J]. International Journal of Biological Macromolecules, 2015,80:1-7.
doi: 10.1016/j.ijbiomac.2015.06.026 pmid: 26093320
[13] KANG Y O, IM J N, PARK W H. Morphological and permeable properties of antibacterial double-layered composite nonwovens consisting of microfibers and nanofibers[J]. Composites Part B: Engineering, 2015,75:256-263.
[14] LUO X M, XIE C Y, WANG H, et al. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implanta-tion[J]. International Journal of Pharmaceutics, 2012,425(1/2):19-28.
doi: 10.1016/j.ijpharm.2012.01.012
[15] MOLLER K, KOBLER J, BEIN T. Colloidal suspensions of mercapto-functionalized nanosized mesoporous silica[J]. Journal of Materials Chemistry, 2007,17(7):624-631.
doi: 10.1039/B611931J
[16] 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017,38(5):14-18.
WU Huanling. Preparation and characterization of drug-loaded regenerated bacterial cellulose fiber[J]. Journal of Textile Research, 2017,38(5):14-18.
[17] 徐瑞芳, 谢晓静, 高晶, 等. 敷料用介孔硅基盐酸环丙沙星缓释颗粒的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):256-262,269.
XU Ruifang, XIE Xiaojing, GAO Jing, et al. Prepration and properties of control-released particles of ciprofloxacin hydrochloride loaded mesoporous silica for wound dressing[J]. Journal of Donghua University (Natural Science), 2019,45(2):256-262,269.
[18] HERRMANN I, SUPRIYANTO E, JAGANATHAN S K, et al. Advanced nanofibrous textile-based dressing material for treating chronic wounds[J]. Bulletin of Materials Science, 2018,41(1):10.
doi: 10.1007/s12034-017-1525-7
[19] TAKAHASHI K, OHTA T. Inflammatory acidic pH enhances hydrogen sulfide-induced transient receptor potential ankyrin 1 activation in RIN-14B cells[J]. Journal of Neuroscience Research, 2013,91(10):1322-1327.
doi: 10.1002/jnr.23251 pmid: 23873754
[20] ANDERSSON J, ROSENHOLM J, AREVA S, et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices[J]. Chemistry of Materials, 2004,16(21):4160-4167.
doi: 10.1021/cm0401490
[21] ABDALKARIM S Y H, YU H, WANG C, et al. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on-off drug release devices[J]. Chemical Engineering Journal, 2019,375. DOI: 10.1016/j.cej.2019.121979.
[22] YANG P P, GAI S L, LIN J. Functionalized mesoporous silica materials for controlled drug delivery[J]. Chemical Society Reviews, 2012,41(9):3679-3698.
pmid: 22441299
[23] CUELLO N I, ELIAS V R, MENDIETA S N, et al. Drug release profiles of modified MCM-41 with superparamagnetic behavior correlated with the employed synjournal method[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017,78:674-681.
doi: 10.1016/j.msec.2017.02.010 pmid: 28576037
[1] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[2] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[3] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[4] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2 / 聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[5] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/ 硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
[6] 王杰, 周茗玮, 汪滨, 李秀艳. 纳米纤维膜基柔性压力传感器的优化设计制备[J]. 纺织学报, 2019, 40(11): 32-37.
[7] 高尚鹏, 黄庆林, 戴维, 肖长发. 聚偏氟乙烯光致热纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(08): 1-6.
[8] 仝伟, 方汝仙, 李家炜, 易玲敏. 静电纺双疏型聚丙烯腈基纳米纤维膜制备及其性能[J]. 纺织学报, 2019, 40(01): 1-8.
[9] 方玮 徐岚. 漏斗式喷气静电纺聚乙烯吡咯烷酮纳米纤维膜的制备及其表征[J]. 纺织学报, 2018, 39(10): 7-11.
[10] 陈洪立 焦晓宁 柯鹏. 取向增强复合锂离子电池隔膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 8-14.
[11] 张博亚 李佳慧 张如全 李建强. 静电纺聚丙烯腈/硫酸铜纳米纤维膜的制备及其性能[J]. 纺织学报, 2018, 39(07): 15-20.
[12] 王遥 朱青 胡春艳 王栋 阎克路. 改性聚乙烯醇-乙烯共聚物纳米纤维膜对重金属离子的吸附性能[J]. 纺织学报, 2017, 38(06): 11-16.
[13] 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017, 38(05): 14-18.
[14] 王利君 熊杰 骆菁菁 赵兴艳 赵新飞. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(05): 8-13.
[15] 赵伟伟 汪滨 王娇娜 裴广玲 李从举. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(03): 6-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!