纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 174-181.doi: 10.13475/j.fzxb.20191100408

• 综合述评 • 上一篇    下一篇

织物散湿性能的研究进展

雷敏, 李毓陵(), 马颜雪, 程隆棣, 周峰   

  1. 东华大学 纺织学院, 上海 201620
  • 收稿日期:2019-11-01 修回日期:2020-02-27 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 李毓陵
  • 作者简介:雷敏(1993—),女,博士生。主要研究方向为织物的热湿传递。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309100);东华大学研究生创新基金资助项目(CUSF-DH-D-2019053)

Research progress of moisture evaporating performance of fabrics

LEI Min, LI Yuling(), MA Yanxue, CHENG Longdi, ZHOU Feng   

  1. College of Textiles, Donghua University , Shanghai 201620, China
  • Received:2019-11-01 Revised:2020-02-27 Online:2020-07-15 Published:2020-07-23
  • Contact: LI Yuling

摘要:

为有效评价织物的散湿功能,获得性能优异的热湿舒适性产品,探究了纺织品散湿性能的影响因素,包括出汗速度、温度、湿度等环境因素,以及纤维组成、纤维形貌、织物结构等内部因素。然后从散湿性能测试的国际标准及测量指标、室温散湿测试、加热散湿测试3个方面,分析了不同检测方法的特点、适用范围及最新研究进展,研究了现有检测标准与方法的优势与局限性。最后指出,应该通过搭建可模拟真实人体微气候与外界环境的热湿检测装置,系统地分析环境因素与织物性能对散湿的影响,研究散湿过程的传热传质机制,为织物性能优化与舒适性面料的开发提供理论参考。

关键词: 织物散湿性能, 热湿舒适性, 吸湿快干, 水分管理

Abstract:

In order to evaluate the moisture evaporating property of fabrics and to produce thermal-moisture comfort products with excellent performance, this paper reviews on the influencing factors of moisture evaporating properties of fabrics, including environmental factors (sweating speed, temperature and humidity) and textile structure (fiber composition, fiber morphology, fabric structure). The researches about international standards and measurement indexes of the moisture evaporating, measurement in indoor temperature and in heat were analyzed to evaluate their advantage, applicability and disadvantage. Following the review, it is suggested that we should build a thermal-moisture detection device that can simulate the real microclimate to study the domination of environmental factors and fabric properties on the moisture evaporating. It is concluded that further research on heat and mass transfer mechanisms in the evaporating process are essential to produce comfortable fabrics.

Key words: moisture evaporating performance of fabric, thermal-moisture comfort, quick-drying, moisture management

中图分类号: 

  • TS101.923

表1

人体对织物水分管理性能的需求"

类别 季节 环境 出汗量 人体对织物水分管理性能的需求
运动服 低温低湿 汗汽无法散发会有湿冷刺激,要求导湿、散湿性好
高温高湿/低湿 汗汽无法散发会有黏腻、闷感,要求散湿性好
日常休闲服饰 低温高湿/低湿 快速吸湿
高温高湿/低湿 中等 快速吸湿、导湿
贴身内衣、袜品 低温高湿/低湿 直接与皮肤紧密接触,空气对流少,要求快速吸湿
高温高湿/低湿 直接与皮肤紧密接触,空气对流少,要求快速导湿、散湿
高温作业服装 - 高温 吸收汗液越多,服装导热率越高,要求快速散湿
卫生医用产品 - - 快速吸湿导湿,减少皮肤湿触感,有透气性

表2

织物散湿性能测试指标"

测试指标 物理意义 单位 标准
透湿量 在一定时间内,穿透材料表面的水气的质量,被测材料表面温度保持恒定,而相对湿度不定 g/(h·m2) ASTM E96/E96 M—2012《材料水蒸气透过性的标准试验方法》、
JIS L 1099—2012《纺织品透湿性试验方法》、
ISO 2528—1995《薄页材料 水蒸气透湿度的测定 重量法》、
BS 7209—1990(R1997)《水蒸气能渗透的衣料规范》
湿阻 服装内外的水蒸气压差与垂直通过单位面积内蒸发热流量的比值 Pa·m2/W GB/T 11048—2008《纺织品 生理舒适性 稳态条件下热阻和湿阻的测定》
水分蒸发
速率
蒸发的水分质量与滴加的水分总质量的比值 % AATCC 201《织物干燥速度测试:热板法》、
GB/T 21655.1—2008《纺织品 吸湿速干性的评定 第1部分:单项组合试验法》
水分残存率 织物含湿量与滴加水分量的比值 % FTTS-FA-004《吸湿排汗速干纺织品》
干燥时间 润湿的织物达到干态质量所用时间 s AATCC 201《织物干燥速度测试:热板法》、
JIS L1096—2010《机织物和针织物的测试方法:干燥性》、
GB/T 21655.1—2008《纺织品 吸湿速干性的评定 第一部分:单项组合试验法》

表3

织物散湿性能测试方法的对比"

测试条件 测试方法 指标 人体-服装-大气微环境影响因素
出汗方式 蒸发面积 温度/℃ 风速/(m·s-1) 湿度
室温测试 透湿杯法 透湿量 - 控制 - - -
滴水称量法 蒸发速率 - - - - -
模拟出汗法 蒸发速率 持续出汗 - - - -
加热测试 加热干燥法 蒸发时间 滴定量水、完全浸润 - 37 1.5 -
仿人体法 热阻 持续出汗 - 37 变化风速 变化湿度
[1] FUKAZAWA T, HAVENITH G. Differences in comfort perception in relation to local and whole body skin wettedness[J]. European Journal of Applied Physiology, 2009,106(1):15-24.
doi: 10.1007/s00421-009-0983-z pmid: 19159949
[2] OZDIL N, SUPUREN G, OZCELIK G, et al. A study on the moisture transport properties of the cotton knitted fabrics in the single jersey structure[J]. Tekstil Ve Konfeksiyon, 2009,19(3):218-223.
[3] BOGERD C P, NIEDERMANN R, BRUEHWILER P A, et al. The effect of two sock fabrics on perception and physiological parameters associated with blister incidence: a field study[J]. Annals of Occupational Hygiene, 2012,56(4):481-488.
[4] BAUSSAN E, BUENO M A, ROSSI R M, et al. Analysis of current running sock structures with regard to blister prevention[J]. Textile Research Journal, 2013,83(8):836-848.
[5] DERLER S, RAO A, BALLISTRERI P, et al. Medical textiles with low friction for decubitus prevention[J]. Tribology International, 2012,46(1):208-214.
[6] KAR F, FAN J, YU W, et al. Effects of thermal and moisture transport properties of T-shirts on wearer's comfort sensations[J]. Fibers and Polymers, 2007,8(5):537-542.
[7] SENTHILKUMAR M, SAMPATH M B, RAMACHANDRAN T. Moisture management in an active sportswear: techniques and evaluation: a review article[J]. Journal of The Institution of Engineers (India): Series E, 2012,93(2):61-68.
[8] 陆雅芳, 周晨, 党敏. 纺织品吸湿速干性能测试技术及标准分析[J]. 纺织导报, 2017(9):32-37.
LU Yafang, ZHOU Chen, DANG Min. Testing technologies and standards for moisture absorbent andquick-drying property of textiles[J]. China Textile Leader, 2017(9):32-37.
[9] 范菲, 齐宏进. 织物孔径特性与织物结构及性能的关系[J]. 纺织科技进展, 2008(4):57-60.
FAN Fei, QI Hongjin. Property research of polyacrylacid ester size mixture[J]. Progress in Textile Science and Technology, 2008(4):57-60.
[10] FOHR J P. Heat and moisture transfer between human body and environment[M]. London: John Wiley & Sons, 2015: 97-137.
[11] PAN N, GIBSON P. Thermal and moisture transport in fibrous materials[M]. Cambridge: Woodhead Publishing, 2006: 308-355.
[12] SAHA A K, DAS D, SRIVASTAVA R, et al. Fluid mechanics and fluid power: contemporary research[M]. New Delhi: Springer, 2014: 53-62.
[13] IP R W L, WAN E I C. New use heat transfer theories for the design of heat setting machines for precise post-treatment of dyed fabrics[C] //Proceedings of Defect and Diffusion Forum. Stafa-Zurich: Trans Tech Publications Ltd, 2011,312:748-751.
[14] IP R W L, WAN E I C. The new use of diffusion theories for the design of heat setting process in fabric drying[J]. Advances in Modeling of Fluid Dynamics, 2012, 312-315:143-170.
[15] GILRON J, SOFFER A. Knudsen diffusion in microporous carbon membranes with molecular sieving character[J]. Journal of Membrane Science, 2002,209(2):339-352.
[16] FOURT L, SOOKNE A M, FRISHMAN D, et al. The rate of drying of fabrics[J]. Textile Research Journal, 1951,21(1):26-33.
[17] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 90-93.
YU Weidong. Materials of textiles[M]. Beijing: China Textile & Apparel Press, 2006: 90-93.
[18] WANG X, LI W, XU W, et al. Study on the surface temperature of fabric in the process of dynamic moisture liberation[J]. Fibers and Polymers, 2014,15(11):2437-2440.
[19] HASSAN M M, LEIGHS S J. Quick dry ability of various quick drying polyester and wool fabrics assessed by a novel method[J]. Drying Technology, 2017,35(5):585-592.
[20] SCHICK M J. Surface characteristics of fibers and textiles: part II[M]. New York: Routledge, 2017: 417-444.
[21] YASUDA T, MIYAMA M, YASUDA H J L. Dynamics of the surface configuration change of polymers in response to changes in environmental conditions: 2: comparison of changes in air and in liquid water[J]. Langmuir, 1992,8(5):1425-1430.
[22] 王金花. 异形涤纶的吸湿快干性评价[J]. 纺织科学研究, 2019(7):14.
WANG Jinhua. Evaluation in moisture absorption and quick-drying properties of profiled polyester[J]. Textile Science Research, 2019(7):14.
[23] WANG X, HUANG Z, MIAO D, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2018,13(2):1060-1070.
pmid: 30561986
[24] DAI B, LI K, SHI L, et al. Bioinspired janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019,31(41):1904113.
[25] 龙晶, 沈兰萍. 织物组织结构对吸湿快干机织物性能的影响[J]. 合成纤维, 2018,47(2):36-39.
LONG Jing, SHEN Lanping. Effect of weave structure on properties of moisture absorbent and quick drying woven fabric[J]. Synthetic Fiber in China, 2018,47(2):36-39.
[26] 张璐璐, 丁放, 胡雪燕, 等. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017,38(9):89-93.
ZHANG Lulu, DING Fang, HU Xueyan, et al. Influence of pattern and ratio of hydrophobic area on moisture management property of cotton fabric[J]. Journal of Textile Research, 2017,38(9):89-93.
[27] LOLAKI A, SHANBEH M, BORHANI S. Effect of structural parameters of porous yarns and fabric on air permeability and moisture transfer of double-face woven fabrics[J]. Journal of The Textile Institute, 2017,108(6):992-1000.
[28] WEDER M, ROSSI R M, CHAIGNEAU C, et al. Evaporative cooling and heat transfer in functional underwear[J]. International Journal of Clothing Science Technology, 2008,20(2):68-78.
[29] 潘文丽. 纺织品吸湿排汗性能的测试标准[J]. 印染, 2015(24):40-44.
PAN Wenli. Standard test methods for moisture management textiles[J]. China Dyeing & Finishing, 2015(24):40-44.
[30] WOODRUFF C W, PECK G E, BANKER G S. Effect of environmental conditions and polymer ratio on water vapor transmission through free plasticized cellulose films[J]. Journal of Pharmaceutical Sciences, 1972,61(12):1956-1959.
doi: 10.1002/jps.2600611214 pmid: 4638103
[31] WANG F, ZHOU X, WANG S. Development processes and property measurements of moisture absorption and quick dry fabrics[J]. Fibres & Textiles in Eastern Europe, 2009,17(2):46-49.
[32] LAING R M, WILSON C A, GORE S E, et al. Determining the drying time of apparel fabrics[J]. Textile Research Journal, 2007,77(8):583-590.
doi: 10.1177/0040517507078232
[33] BESKISIZ E, UCAR N, DEMIR A. The effects of super absorbent fibers on the washing, dry cleaning and drying behavior of knitted fabrics[J]. Textile Research Journal, 2009,79(16):1459-1466.
doi: 10.1177/0040517508095606
[34] FANGUEIRO R, FILGUEIRAS A, SOUTINHO F, et al. Wicking behavior and drying capability of functional knitted fabrics[J]. Textile Research Journal, 2010,80(15):1522-1530.
[35] YANILMAZ M, KALAOGLU F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics[J]. Textile Research Journal, 2012,82(8):820-831.
doi: 10.1177/0040517511435851
[36] DURU S C, CANDAN C. Effect of repeated laundering on wicking and drying properties of fabrics of seamless garments[J]. Textile Research Journal, 2013,83(6):591-605.
doi: 10.1177/0040517512456754
[37] SARICAM C, KALAOGLU F. Investigation of the wicking and drying behavior of polyester woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2014,22(3):73-78.
[38] 张才前, 姚菊明. 织物导湿排汗性能自动测试方法[J]. 纺织学报, 2018,39(1):45-50.
ZHANG Caiqian, YAO Juming. Automatic moisture transmission and perspirationtest method of fabrics[J]. Journal of Textile Research, 2018,39(1):45-50.
[39] TANG K P M, WU Y S, CHAU K H, et al. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: spontaneous uptake water transport tester[J]. Scientific Reports, 2015(5):9689.
[40] TAND K P M, CHAU K H, KAN C W, et al. Characterizing the transplanar and in-plane water transport properties of fabrics under different sweat rate: forced flow water transport tester[J]. Scientific Reports, 2015(5):17012.
[41] WANG X, ZHAO Y, LI W, et al. Effect of surface modifications on the thermal and moisture behavior of wool fabric[J]. Applied Surface Science, 2015,342:101-105.
doi: 10.1016/j.apsusc.2015.03.027
[42] CHAU K H, TANG K P M, KAN C W. Constant temperature drying rate tester: real-time water evaporation measurement of fabrics[J]. IEEE Transactions on Instrumentation and Measurement, 2018,67(11):2635-2648.
doi: 10.1109/TIM.19
[43] CHAU K H, TANG K P M, LAM N F, et al. Constant power drying rate tester: measurement of water evaporation from textiles with heat[J]. Fibers and Polymers, 2018,19(10):2208-2217.
[44] 陶俊, 王府梅, 聂凤明, 等. 新世纪国内外测试服装保温性的暖体假人比较[J]. 成都纺织高等专科学校学报, 2017,34(1):181-186.
TAO Jun, WANG Fumei, NIE Fengming, et al. Comparison of manikins for testing garment insulation in the new century[J]. Journal of Chengdu Textile College, 2017,34(1):181-186.
[45] FAN J T, CHEN Y S. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin[J]. Measurement Science and Technology, 2002,13(7):1115-1123.
[46] HOLMER I. Thermal manikin history and applica-tions[J]. European Journal of Applied Physiology, 2004,92(6):614-618.
doi: 10.1007/s00421-004-1135-0 pmid: 15185083
[47] CUI Z, FAN J, WU Y. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams[J]. Ergonomics, 2016,59(8):999-1008.
doi: 10.1080/00140139.2015.1111428 pmid: 26653094
[48] WANG F, SHI W, LU Y, et al. Effects of moisture content and clothing fit on clothing apparent ″wet″ thermal insulation: a thermal manikin study[J]. Textile Research Journal, 2016,86(1):57-63.
[49] LU Y, WANG F, WAN X, et al. Clothing resultant thermal insulation determined on a movable thermal manikin: part II: effects of wind and body movement on local insulation[J]. International Journal of Biometeorology, 2015,59(10):1487-1498.
doi: 10.1007/s00484-015-0959-0 pmid: 25605409
[50] MORRISSEY M P, ROSSI R M. The effect of wind, body movement and garment adjustments on the effective thermal resistance of clothing with low and high air permeability insulation[J]. Textile Research Journal, 2014,84(6):583-592.
[51] 张文欢, 钱晓明, 牛丽. 服装热阻、湿阻的测量方法及影响因素[J]. 丝绸, 2017,54(5):43-50.
ZHANG Wenhuan, QIAN Xiaoming, NIU Li. The measurement and influential factors of thermal resistance and moisture resistance of clothing[J]. Journal of Silk, 2017,54(5):43-50.
[52] WANG F, ANNAHEIM S, MORRISSEY M, et al. Real evaporative cooling efficiency of one-layer tight-fitting sportswear in a hot environment[J]. Scandinavian Journal of Medicine & Science in Sports, 2014,24(3):E129-E139.
doi: 10.1111/sms.12117 pmid: 24033668
[53] HAVENITH G, BROEDE P, DEN HARTOG E, et al. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin[J]. Journal of Applied Physiology, 2013,114(6):778-785.
doi: 10.1152/japplphysiol.01271.2012 pmid: 23329814
[54] ATASAĞUN H G, OKUR A, PSIKUTA A, et al. Determination of the effect of fabric properties on the coupled heat and moisture transport of underwear-shirt fabric combinations[J]. Textile Research Journal, 2018,88(11):1319-1331.
doi: 10.1177/0040517517700192
[1] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[2] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[3] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[4] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[5] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[6] 刘慧慧 王云仪. 纸尿裤服用性能测评研究进展[J]. 纺织学报, 2018, 39(06): 175-182.
[7] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[8] 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93.
[9] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[10] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[11] 张纪婷 蒋高明. 保暖涤纶割圈绒织物的热湿舒适性[J]. 纺织学报, 2015, 36(04): 55-59.
[12] 张新杰 丛洪莲. 结构参数对割圈绒织物热湿舒适性的影响[J]. 纺织学报, 2014, 35(1): 46-0.
[13] 徐巧 丛洪莲. 冰爽涤纶无缝内衣面料热湿舒适性的综合评价[J]. 纺织学报, 2013, 34(11): 49-0.
[14] 王立新, 范雪荣, 孙友昌, 柴蕾. 基于纤维孔隙状况的皮革服装材料热湿舒适性的比较[J]. 纺织学报, 2012, 33(8): 97-102.
[15] 吴海燕;张云;谢红. 不同类型防水透湿织物的液态水份管理能力[J]. 纺织学报, 2011, 32(1): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!