纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 40-46.doi: 10.13475/j.fzxb.20191102407
SHAO Jinxin1, ZHANG Baochang1,2(), CAO Jipeng3
摘要:
针对棉纤维梳理过程中高速摄像机对锡林表面拍摄得到的图像无法人眼识别的问题,使用图像处理与深度学习结合的算法,通过一系列检测流程实现人眼的辅助识别。采用高速摄像机对梳棉机移动盖板下的锡林表面梳理过程进行拍摄得到数据图像,首先对图像通过多级小波卷积神经网络提取去噪残差,然后使用深度卷积超分辨率重构网络进行超分辨率重构,最后使用一种强噪声条件下的多尺度边缘检测与增强算法进行纤维的勾画,得到可供人眼识别的清晰的纤维图像,最后尝试使用特征增强后的图像样本进行循环生成对抗网络的训练,得到更连续清晰的纤维提取结果。研究表明,该图像处理流程提高了对梳理过程纤维的检测识别效果,为纤维梳理领域的研究提供了一种新的思路。
中图分类号:
[1] | 于学智, 邵英海, 曹继鹏. 刺辊速度对梳理后纤维长度指标的影响[J]. 棉纺织技术, 2016,44(3):26-29. |
YU Xuezhi, SHAO Yinghai, CAO Jipeng. Influence of licker-in speed on fiber length index after carding[J]. Cotton Textile Technology, 2016,44(3):26-29. | |
[2] | 何晓峰, 徐守东, 刘从九. 棉纤维细度检测技术综述[J]. 中国纤检, 2018(10):88-93. |
HE Xiaofeng, XU Shoudong, LIU Congjiu. Summary of cotton fiber fineness detection technology[J]. China Fiber Inspection, 2018 (10):88-93. | |
[3] | 刘天骄, 孙润军, 王红红. 利用激光细度仪快速检测棉纤维细度的探究[J]. 棉纺织技术, 2018,46(3):77-80. |
LIU Tianjiao, SUN Runjun, WANG Honghong. Study on rapid detection of cotton fiber linear density with the laserscan[J]. Cotton Textile Technology, 2018,46(3):77-80. | |
[4] | LIU K, TAN J, SU B. An adaptive image denoising model based on Tikhonov and TV regularizations[J]. Advances in Multimedia, 2014,2014:1-10. |
[5] | LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C] //Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Salt Lake: Computer Vision Foundation, 2018: 773-782. |
[6] | 刘亚梅. 基于梯度边缘最大值的图像清晰度评价[J]. 图学学报, 2016,37(2):97-102. |
LIU Yamei. Sharpness assessment for remote sensing image based on maximum gradient[J]. Journal of Graphics, 2016,37(2):97-102. | |
[7] | 孙旭, 李晓光, 李嘉锋, 等. 基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报, 2017,43(5):697-709. |
SUN Xu, LI Xiaoguang, LI Jiafeng, et al. Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017,43(5):697-709. | |
[8] |
DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 pmid: 26761735 |
[9] |
YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873.
pmid: 20483687 |
[10] | VIJAYARANI S, VINUPRIYA M. Performance analysis of canny and sobel edge detection algorithms in image mining[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013,1(8):1760-1767. |
[11] | GALUN M, BASRI R, BRANDT A. Multiscale edge detection and fiber enhancement using differences of oriented means[C] //2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro:IEEE, 2007: 1-8. |
[12] | 颜贝, 张建林. 基于生成对抗网络的图像翻译现状研究[J]. 国外电子测量技术, 2019,38(6):130-134. |
YAN Bei, ZHANG Jianlin. Research the status of image translation based on generative adversarial networks[J]. Foreign Electronic Measurement Technology, 2019,38(6):130-134. | |
[13] | CRESWELL A, WHITE T, DUMOULLIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018,35(1):53-65. |
[14] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C] //Advances in Neural Information Processing Systems. Barcelona: Curran Associates, 2016: 2234-2242. |
[15] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: Computer Vision Foundation, 2017: 2223-2232. |
[1] | 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43. |
[2] | 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175. |
[3] | 朱俊平 路凯 柴新玉 钟跃崎 . 羊绒与羊毛直径的水平集中轴线法测量[J]. 纺织学报, 2017, 38(09): 14-18. |
|