纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 40-46.doi: 10.13475/j.fzxb.20191102407

• 纺织工程 • 上一篇    下一篇

基于图像处理与深度学习方法的棉纤维梳理过程纤维检测识别技术

邵金鑫1, 张宝昌1,2(), 曹继鹏3   

  1. 1.北京航空航天大学 自动化科学与电气工程学院, 北京 100191
    2.深圳航天科技创新研究院, 广东 深圳 518057
    3.辽东学院 辽宁省功能纺织材料重点实验室, 辽宁 丹东 118003
  • 收稿日期:2019-11-07 修回日期:2020-04-09 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 张宝昌
  • 作者简介:邵金鑫(1996—),男,硕士生。主要研究方向为深度学习中的网络压缩技术、图像目标分类与检测算法。
  • 基金资助:
    深圳市海外高层次人才资金资助项目(KQTD2016112515134654);辽宁省自然科学基金项目(2019-MS-148)

Fiber detection and recognition technology in cotton fiber carding process based on image processing and deep learning

SHAO Jinxin1, ZHANG Baochang1,2(), CAO Jipeng3   

  1. 1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    2. Shenzhen Academy of Aerospace Technology, Shenzhen, Guangdong 518057, China
    3. Liaoning Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong, Liaoning 118003, China
  • Received:2019-11-07 Revised:2020-04-09 Online:2020-07-15 Published:2020-07-23
  • Contact: ZHANG Baochang

摘要:

针对棉纤维梳理过程中高速摄像机对锡林表面拍摄得到的图像无法人眼识别的问题,使用图像处理与深度学习结合的算法,通过一系列检测流程实现人眼的辅助识别。采用高速摄像机对梳棉机移动盖板下的锡林表面梳理过程进行拍摄得到数据图像,首先对图像通过多级小波卷积神经网络提取去噪残差,然后使用深度卷积超分辨率重构网络进行超分辨率重构,最后使用一种强噪声条件下的多尺度边缘检测与增强算法进行纤维的勾画,得到可供人眼识别的清晰的纤维图像,最后尝试使用特征增强后的图像样本进行循环生成对抗网络的训练,得到更连续清晰的纤维提取结果。研究表明,该图像处理流程提高了对梳理过程纤维的检测识别效果,为纤维梳理领域的研究提供了一种新的思路。

关键词: 棉纤维梳理, 纤维图像, 纤维识别, 多级小波卷积神经网络, 多尺度边缘检测

Abstract:

Aiming at the problem that the images obtained by the high-speed camera on the surface of the cylinder during the cotton fiber carding process cannot be recognized by the human eye, algorithms that combine image processing and deep learning were employed to assist human identification through a series of detection processes. The image data was derived from the high-speed video camera data of the carding process of the cylinder surface under the moving cover of the card. The specific implementation process was to first extract the denoising residuals from the image through a multi-level wavelet convolutional neural network, then use the deep convolutional networks for super-resolution reconstruction, and finally use a multi-scale edge detection and enhancement algorithm under strong noise to sketch the fibers. Through the processing of these three steps in the algorithm, a clear fiber image recognizable by the human eyes was obtained. Feature-enhanced image samples were used to train the cycle-consistent adversarial network to obtain more continuous and clear fiber extraction results. The results from the research demonstrate that the proposed processing procedure improves the detection and recognition effect of fibers during carding, and provides a new idea for the research in the field of carding.

Key words: cotton fiber carding, fiber image, fiber recognition, multi-level wavelet convolutional neural network, multi-scale edge detection

中图分类号: 

  • TS113.1

图1

样本集示例图片"

图2

检测流程图"

图3

多级小波卷积神经网络的网络结构示意图"

图4

示例1和2初步提取特征的提取效果"

图5

深度卷积超分辨率重构网络结构示意图"

图6

示例图片1和2的超分辨率重构后的纤维检测效果"

图7

示例图片1和2勾画后的效果图"

图8

CycleGAN的模型结构"

图9

CycleGAN模型的测试输出结果"

[1] 于学智, 邵英海, 曹继鹏. 刺辊速度对梳理后纤维长度指标的影响[J]. 棉纺织技术, 2016,44(3):26-29.
YU Xuezhi, SHAO Yinghai, CAO Jipeng. Influence of licker-in speed on fiber length index after carding[J]. Cotton Textile Technology, 2016,44(3):26-29.
[2] 何晓峰, 徐守东, 刘从九. 棉纤维细度检测技术综述[J]. 中国纤检, 2018(10):88-93.
HE Xiaofeng, XU Shoudong, LIU Congjiu. Summary of cotton fiber fineness detection technology[J]. China Fiber Inspection, 2018 (10):88-93.
[3] 刘天骄, 孙润军, 王红红. 利用激光细度仪快速检测棉纤维细度的探究[J]. 棉纺织技术, 2018,46(3):77-80.
LIU Tianjiao, SUN Runjun, WANG Honghong. Study on rapid detection of cotton fiber linear density with the laserscan[J]. Cotton Textile Technology, 2018,46(3):77-80.
[4] LIU K, TAN J, SU B. An adaptive image denoising model based on Tikhonov and TV regularizations[J]. Advances in Multimedia, 2014,2014:1-10.
[5] LIU P, ZHANG H, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C] //Proceedings of the IEEE conference on computer vision and pattern recognition workshops. Salt Lake: Computer Vision Foundation, 2018: 773-782.
[6] 刘亚梅. 基于梯度边缘最大值的图像清晰度评价[J]. 图学学报, 2016,37(2):97-102.
LIU Yamei. Sharpness assessment for remote sensing image based on maximum gradient[J]. Journal of Graphics, 2016,37(2):97-102.
[7] 孙旭, 李晓光, 李嘉锋, 等. 基于深度学习的图像超分辨率复原研究进展[J]. 自动化学报, 2017,43(5):697-709.
SUN Xu, LI Xiaoguang, LI Jiafeng, et al. Review on deep learning based image super-resolution restoration algorithms[J]. Acta Automatica Sinica, 2017,43(5):697-709.
[8] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 pmid: 26761735
[9] YANG J, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010,19(11):2861-2873.
pmid: 20483687
[10] VIJAYARANI S, VINUPRIYA M. Performance analysis of canny and sobel edge detection algorithms in image mining[J]. International Journal of Innovative Research in Computer and Communication Engineering, 2013,1(8):1760-1767.
[11] GALUN M, BASRI R, BRANDT A. Multiscale edge detection and fiber enhancement using differences of oriented means[C] //2007 IEEE 11th International Conference on Computer Vision. Rio de Janeiro:IEEE, 2007: 1-8.
[12] 颜贝, 张建林. 基于生成对抗网络的图像翻译现状研究[J]. 国外电子测量技术, 2019,38(6):130-134.
YAN Bei, ZHANG Jianlin. Research the status of image translation based on generative adversarial networks[J]. Foreign Electronic Measurement Technology, 2019,38(6):130-134.
[13] CRESWELL A, WHITE T, DUMOULLIN V, et al. Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018,35(1):53-65.
[14] SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C] //Advances in Neural Information Processing Systems. Barcelona: Curran Associates, 2016: 2234-2242.
[15] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: Computer Vision Foundation, 2017: 2223-2232.
[1] 张铮烨, 辛斌杰, 邓娜, 陈阳, 邢文宇. 基于边界跟踪测量麻纤维横截面参数的算法研究与应用[J]. 纺织学报, 2020, 41(02): 39-43.
[2] 巫莹柱 单颖法 黄伯熹 林广茂 梁家豪 张晓利. 聚对苯二甲酸丙二醇酯与聚对苯二甲酸丁二醇酯混纺纤维的智能识别[J]. 纺织学报, 2018, 39(09): 169-175.
[3] 朱俊平 路凯 柴新玉 钟跃崎 . 羊绒与羊毛直径的水平集中轴线法测量[J]. 纺织学报, 2017, 38(09): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!