纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 59-66.doi: 10.13475/j.fzxb.20190706308

• 纺织工程 • 上一篇    下一篇

基于数字单元法的三维正交织物微观几何结构建模

马莹1,2(), 何田田1, 陈翔1,3, 禄盛1,3, 王友棋2   

  1. 1.重庆邮电大学 先进制造工程学院, 重庆 400065
    2.堪萨斯州立大学 复合材料实验室, 堪萨斯 66506
    3.西安交通大学 机械结构强度与振动国家重点实验室, 陕西 西安 710049
  • 收稿日期:2019-07-29 修回日期:2020-04-07 出版日期:2020-07-15 发布日期:2020-07-23
  • 作者简介:马莹(1985—),女,讲师,博士。主要研究方向为三维机织物几何结构建模及其力学性能分析。E-mail: maying@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(11802047);重庆市教委科学技术研究计划项目(KJQN201900632);重庆市留学人员回国创业创新项目(cx2018126)

Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach

MA Ying1,2(), HE Tiantian1, CHEN Xiang1,3, LU Sheng1,3, WANG Youqi2   

  1. 1. College of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    2. Composites Laboratory, Kansas State University, Kansas 66506, USA
    3. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
  • Received:2019-07-29 Revised:2020-04-07 Online:2020-07-15 Published:2020-07-23

摘要:

为了反映织物内部纱线的空间构型和微观几何结构,针对在织物建模过程中,因忽略纤维间的相互作用而引起的纱线截面形状变化的问题,基于数字单元法理论,提出了一种计算纤维间摩擦力的方法。通过纱线纤维化离散,用数值模拟和仿真方法模拟三维正交织物成型过程,建立了5种精度递进的微观几何结构数值模型。5种模型中的每根纱线分别由4、7、12、19和37根数字纤维表征。研究结果表明:随着纱线纤维化离散程度的提高,仿真时间延长,织物厚度减小,纤维体积分数增大,节点平均作用力下降速度变缓,势能变小;当每根纱线由19根数字纤维组成时,所建织物的微观几何结构数值模型与真实织物样本在显微镜下的内部切片图像较为吻合。

关键词: 三维机织复合材料, 三维正交织物, 数字单元法, 微观几何结构, 纱线纤维化离散

Abstract:

In order to reflect the configuration and micro-geometry of yarns inside the fabric and aiming at the problem of overlooking the change of cross-section yarn shape, which was caused by relative motion between fibers, during the simulation process, this paper proposed a method for calculating the inter-fiber friction based on the digital element approach. Based on this, the micro-geometry models of five three-dimensional orthogonal woven fabrics were built at sub-yarn scale with varied cross-sectional yarn shape via weaving process simulation. Each model is composed of 4, 7, 12, 19, and 37 digital fibers per yarn respectively. The results show that when the number of digital fiber per yarn increases, the simulation time and fiber volume fraction increases, the fabric thickness, the rate of the nodal force decline, and the potential energy decreases. When the number of fiber per yarn equals to 19, the micro-geometry of the numerical model is the most consistent with the microscopic picture of the actual fabric.

Key words: three-dimensional woven composite, three-dimensional orthogonal woven fabric, digital element approach, micro-geometry, yarn discretization

中图分类号: 

  • TS105.1

图1

数字单元法三要素"

图2

摩擦力计算方法示意图"

图3

三维正交织物组织结构"

图4

三维正交织物拓扑结构"

图5

数字单元法建模流程"

图6

不同仿真时间的三维正交织物织造过程模拟"

图7

节点平均作用力和时间关系"

图8

织物单胞势能和时间关系"

表1

三维正交织物织造过程数据"

纤维
根数
迭代
次数
离散
程度/根
纤维体积
分数/%
累计
耗时/ms
1 2 30.1 13.2
4 2 4 36.4 19.9
3 4 42.2 33.5
1 7 28.5 12.1
7 2 7 36.4 32.1
3 7 46.6 58.8
1 4 26.9 8.1
12 2 12 31.9 28.2
3 12 42.3 68.3
1 19 28.1 17.8
19 2 19 36.3 50.6
3 19 45.3 99.8
1 37 28.2 24.9
37 2 37 36.5 71.9
3 37 50.1 163.9

图9

织物单胞模型与切片显微图像的正视图对比结果"

图10

织物单胞模型与切片显微图像的侧视图对比结果"

图11

织物模型厚度随时间的变化"

[1] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018,35(4):748-759.
GUAN Liuxiang, LI Jialu, JIAO Yanan, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica, 2018,35(4):748-759.
[2] 王旭. 基于3ds Max软件的机织物结构三维建模研究[J]. 安徽工程大学学报, 2013,28(3):27-29.
WANG Xu. 3D modeling on woven fabric structure by 3ds Max[J]. Journal of Anhui Polytechnic University, 2013,28(3):27-29.
[3] 陈振, 管江明, 邢明杰. 基于TexGen的织物仿真建模及其应用方向[J]. 棉纺织技术, 2016,44(11):81-84.
CHEN Zhen, GUAN Jiangming, XING Mingjie. Fabric simulation modeling based on TexGen and its application direction[J]. Cotton Textile Technology, 2016,44(11):81-84.
[4] 余育苗, 王肖钧, 李永池, 等. 三维正交机织复合材料的单胞模型及应用[J]. 复合材料学报, 2009,26(4):181-185.
YU Yumiao, WANG Xiaojun, LI Yongchi, et al. Cell model of 3D orthogonal woven composite and its application[J]. Acta Materiae Compositae Sinica, 2009,26(4):181-185.
[5] GREEN S D, MATVEEV M Y, LONG A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry[J]. Composite Structures, 2014(118):284-293.
doi: 10.1016/j.compstruct.2014.07.005
[6] FREDRIK S, STEFAN H. Spatial modelling of 3D-woven textiles[J]. Composite Structures, 2012,94(5):1495-1502.
doi: 10.1016/j.compstruct.2011.12.003
[7] ISART N, SAID B E, IVANOV D S, et al. Internal geometric modelling of 3D woven composites:a comparison between different approaches[J]. Composite Structures, 2015(132):1219-1230.
[8] WANG Y Q, MIAO Y Y, SWENSON D, et al. Digital element approach for simulating impact and penetration of textiles[J]. International Journal of Impact Engineering, 2010,37(5):552-560.
doi: 10.1016/j.ijimpeng.2009.10.009
[9] GREEN S D, LONG A C, EL SAID B S F, et al. Numerical modelling of 3D woven preform deforma-tions[J]. Composite Structures, 2014(108):747-756.
[10] DRACH A, DRACH B, TSUKROV I. Processing of fiber architecture data for finite element modeling of 3D woven composites[J]. Advances in Engineering Software, 2014,72(6):18-27.
[11] MIAO Y, ZHOU E, WANG Y, et al. Mechanics of textile composites:micro-geometry[J]. Composites Science & Technology, 2008,68(7):1671-1678.
[12] HUANG L, WANG Y, MIAO Y, et al. Dynamic relaxation approach with periodic boundary conditions in determining the 3D woven textile micro-geometry[J]. Composite Structures, 2013,106(12):417-425.
[13] 曹薇. 纱线卷绕系统恒张力模糊控制策略研究[J]. 现代纺织技术, 2018(2):84-88.
CAO Wei. Research on fuzzy control strategy of constant tension for yarn winding system[J]. Advanced Textile Technology, 2018(2):84-88.
[14] 张灵婕, 缪旭红. 纱线断裂功对经编织造性能的影响[J]. 纺织学报, 2018,39(12):37-40.
ZHANG Lingjie, MIAO Xuhong. Influence of yarn rupture work on performance of warp knitting[J]. Journal of Textile Research, 2018,39(12):37-40.
doi: 10.1177/004051756903900106
[1] 王翔华, 成 玲, 张一帆, 彭海锋, 黄志文, 刘晓志. 三维机织复合材料板簧式起落架结构设计及其有限元分析[J]. 纺织学报, 2020, 41(03): 68-77.
[2] 刘俊岭, 孙颖, 陈利. 含变异结构的三维机织复合材料的轴向拉伸性能[J]. 纺织学报, 2019, 40(12): 162-168.
[3] 高雄 胡侨乐 马颜雪 张琦 魏毅 邱夷平. 不同结构厚截面三维机织碳纤维复合材料的弯曲性能对比[J]. 纺织学报, 2017, 38(09): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!