纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 78-87.doi: 10.13475/j.fzxb.20190800210

• 纺织工程 • 上一篇    下一篇

多智能体博弈的纺织车间搬运机器人任务分配

李珣1(), 南恺恺1, 赵征凡2, 王晓华1, 景军锋1   

  1. 1.西安工程大学 电子信息学院, 陕西 西安 710048
    2.工业和信息化部 电子第五研究所, 广东 广州 510610
  • 收稿日期:2019-08-02 修回日期:2020-01-21 出版日期:2020-07-15 发布日期:2020-07-23
  • 作者简介:李珣(1981—),男,副教授,博士。主要研究方向为基于深度学习的车辆目标检测与跟踪以及多运动机器人协同控制技术。E-mail: leonlee527@163.com
  • 基金资助:
    国家自然科学基金资助项目(51607133);陕西省自然科学基础研究计划项目(2019JM567);中国纺织工业联合会科技指导性项目(2018094);大学生创新创业训练项目(201910709019)

Task allocation of handling robot in textile workshop based on multi-agent game theory

LI Xun1(), NAN Kaikai1, ZHAO Zhengfan2, WANG Xiaohua1, JING Junfeng1   

  1. 1. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. The Fifth Electronics Research Institute, Ministry of Industry and Information Technology, Guangzhou, Guangdong 510610, China
  • Received:2019-08-02 Revised:2020-01-21 Online:2020-07-15 Published:2020-07-23

摘要:

针对当前纺织品智能化生产加工过程中搬运机器人所面临的大规模复杂动态任务分配问题,提出了一种基于智能体博弈理论的分布式自主决策框架。根据纺织品实际生产过程任务环境建立任务模型,在考虑到任务的距离和时间优先级等因素下建立目标函数,以智能体的目标效用函数最优为策略选择依据,引入博弈论中的Nash均衡理论对问题求解,并对该决策框架进行了实验验证。实验结果表明:在该决策框架下任务的分配相比同类分布式任务分配算法能够得到全局最优解,具有较强的可扩展性、良好的鲁棒性、收敛性能,同时对动态任务分配同样具有良好结果表现。

关键词: 多智能体, 搬运机器人, 任务分配, 纺织车间, 博弈论

Abstract:

A distributed autonomous decision-making framework was proposed based on multi-agent game theory. The framework is used to solve the problems of handling robot in the process of intelligent textile production and processing, which are large-scale and complex dynamic task allocation problems. To start with, the task model was established according to the actual task environment of textile production. Taking into account of the task distance and time priority, the target utility function of the agent was then used as the policy selection basis, and the equilibrium theory of the game was introduced to solve the problem. Eventually, the decision framework was verified by experiments. The experimental results show that the global optimal solution of the task allocation in this decision framework can be better achieved in comparison to the similar distributed task allocation algorithms. In summary, the proposed algorithm has high scalability, good robustness, and convergence performance. Furthermore, the proposed algorithm has excellent performance for dynamic task allocation.

Key words: multi-agent, handling robot, task allocation, textile workshop, game theory

中图分类号: 

  • TP24

图1

精梳车间工艺流程图"

图2

纺织车间生产任务抽象简化示意图"

图3

算法流程图"

图4

任务分配迭代完成过程"

图5

相同数量智能体在不同任务数量下的完成结果"

表1

不同数量级m,n下算法迭代性能结果"

m 迭代次数
n=4 n=5 n=6 n=7 n=8
10 14 13 14 12 14
15 23 26 25 23 24
20 38 41 38 38 43
25 55 57 53 49 46
30 68 70 63 72 67
35 73 88 67 85 79
40 89 97 99 94 83
45 107 104 103 98 109
50 112 122 111 122 117
55 124 125 141 134 129
60 158 146 147 150 135
65 166 149 167 164 148
70 166 175 174 165 158
75 168 163 175 180 180
80 178 183 206 189 173
85 185 203 216 207 197
90 216 224 224 214 221
95 223 245 232 221 232
100 223 231 232 243 245
105 233 276 251 258 273
110 251 261 277 263 280
115 236 292 301 284 303
120 247 285 307 302 319
125 · 295 309 306 342
130 · 331 311 314 305
135 · · 329 334 328

图6

3种不同方法的任务分配收益情况"

图7

任务发生动态变化时系统收益"

图8

不同通信网络强度下的任务分配结果"

表2

强通信网络连接实验结果"

智能体数 100次完成任务平均时间/s
PSO 市场法 博弈论
20
25
30
35
40
2.35
2.43
2.68
2.76
3.05
1.53
1.59
1.67
1.73
1.85
0.72
0.85
0.91
0.94
0.96

表3

通信失效30%的弱通信网络连接实验结果"

智能体数 100次完成任务平均时间/s
PSO 市场法 博弈论
20
25
30
35
40
2.73
2.86
2.98
3.18
3.27
2.63
3.07
3.15
3.34
3.58
0.98
1.04
1.16
1.24
1.26

图9

不同情况下任务分配实验"

[1] 曹鹏飞, 郝矿荣, 丁永生. 面向多机器人动态任务分配的事件驱动免疫网络算法[J]. 智能系统学报, 2018,13(6):952-958.
CAO Pengfei, HAO Kuangrong, DING Yongsheng. Event-driven immune network algorithm for multi-robot dynamic task allocation[J]. CAAI Transactions on Intelligent Systems, 2018,13(6):952-958.
[2] 李珣, 李林鹏, 南恺恺, 等. 智能家居移动机器人的人脸识别方法[J]. 西安工程大学学报, 2020,34(1):61-66.
LI Xun, LI Linpeng, NAN Kaikai, et al. Face recognition method of smart home mobile robot[J]. Journal of Xi'an Polytechnic University, 2020,34(1):61-66.
[3] 梁星星, 马扬, 冯旸赫, 等. 面向多旅行商问题的多目标模拟退火算法研究[J]. 南京师大学报(自然科学版), 2017,40(3):80-86.
LIANG Xingxing, MA Yang, FENG Yanghe, et al. Research on multi-objective simulated annealing algorithm for multi-traveling salesman problem[J]. Journal of Nanjing Normal University (Natural Science Edition), 2017,40(3):80-86.
[4] 万路军, 姚佩阳, 税冬东, 等. 多编组任务分配动态优化模型及IVFSA算法求解[J]. 电光与控制, 2014,21(5):43-49,57.
WAN Lujun, YAO Peiyang, SHUI Dongdong, et al. Dynamic task allocation methods in multiple groups using IVFSA[J]. Electronics Optics & Control, 2014,21(5):43-49,57.
[5] TANG F, PARKER L E. A complete methodology for generating multi-robot task solutions using asymtred and market-based task allocation[C] // International Conference on Robotics & Automation. Roma: IEEE, 2007: 108-113.
[6] LEE D H, ZAHEER S A, HAN J H, et al. Competency adjustment and workload balancing framework in multi-robot task allocation[J]. International Journal of Advanced Robotic Systems, 2018,15(6):17-23.
[7] LUO L, CHAKRABORTY N, SYCARA K. Provably-good distributed algorithm for constrained multi-robot task assignment for grouped tasks[J]. IEEE Transactions on Robotics, 2015,31(1):19-30.
[8] 段俊花, 朱怡安, 黄姝娟, 等. 多模态融合的多机器人任务分配算法研究[J]. 西北工业大学学报, 2013,31(6):974-978.
DUAN Junhua, ZHU Yian, HUANG Shujuan, et al. Multi-robot task allocation algorithm based on multi-modality synjournal[J]. Journal of Northwestern Polytechnical University, 2013,31(6):974-978.
[9] 齐心跃, 田彦涛, 杨茂, 等. 基于市场机制的多机器人救火任务分配策略[J]. 吉林大学学报(信息科学版), 2009,27(5):506-513.
QI Xinyue, TIAN Yantao, YANG Mao, et al. Market based multi-robot task allocation for fire disaster response[J]. Journal of Jilin University (Information Science Edition), 2009,27(5):506-513.
[10] 王皓, 曹健. 分布式环境下面向复杂任务的Agent联盟构建[J]. 计算机工程, 2013,39(12):216-222.
WANG Hao, CAO Jian. Agent coalition formation for complex task under distributed environment[J]. Computer Engineering, 2013,39(12):216-222.
[11] 秦新立, 宗群, 李晓瑜, 等. 基于改进蚁群算法的多机器人任务分配[J]. 空间控制技术与应用, 2018,44(5):55-59.
QIN Xinli, ZONG Qun, LI Xiaoyu, et al. Task allocation of multi-robot based on improved ant colony algorithm[J]. Aerospace Control and Application, 2018,44(5):55-59.
[12] 刘淑华, 张嵛, 吴洪岩, 等. 基于群体智能的多机器人任务分配[J]. 吉林大学学报(工学版), 2010,40(1):123-129.
LIU Shuhua, ZHANG Yu, WU Hongyan, et al. Multi-robot task allocation based on swarm intelligence[J]. Journal of Jilin University (Engineering and Technology Edition), 2010,40(1):123-129.
[13] FANG B F, GUO X P, WANG Z J, et al. Collaborative task assignment of interconnected, affective robots towards autonomous healthcare assistant[J]. Future Generation Computer Systems, 2019,92:241-251.
doi: 10.1016/j.future.2018.09.069
[14] 刘小梅, 田彦涛, 杨茂. 基于博弈论的多机器人任务分配算法[J]. 吉林大学学报(信息科学版), 2010,28(3):256-263.
LIU Xiaomei, TIAN Yantao, YANG Mao. Game theory based multi-robot task allocation algorithm[J]. Journal of Jilin University (Information Science Edition), 2010,28(3):256-263.
[15] GERKEY B P. On multi-robot task allocation[J]. British Journal of Health Psychology, 2003,13(4):659-681.
[16] 罗云峰. 博弈论教程[M]. 北京: 清华大学出版社,北京交通大学出版社, 2007: 43-56.
LUO Yunfeng. Course of game theory [M]. Beijing: Tsinghua University Press, Beijing Jiaotong University Press, 2007: 43-56.
[17] 黎萍, 杨宜民. 基于博弈论的多机器人系统任务分配算法[J]. 计算机应用研究, 2013,30(2):392-395.
LI Ping, YANG Yimin. Game theory based task allocation algorithm for multi-robot systems[J]. Application Research of Computers, 2013,30(2):392-395.
[1] 林祖伟;方建斌;宋执环. 基于Multi-Agent的服饰企业分销与物流配送管理系统[J]. 纺织学报, 2007, 28(4): 121-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!