纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 9-14.doi: 10.13475/j.fzxb.20190802106

• 纤维材料 • 上一篇    下一篇

低折射率树脂对原液着色粘胶纤维结构和性能的影响

刘稀1,2, 王冬1,2, 张丽平1,2, 李敏1,2, 付少海1,2()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2019-08-08 修回日期:2020-04-13 出版日期:2020-07-15 发布日期:2020-07-23
  • 通讯作者: 付少海
  • 作者简介:刘稀(1995—),男,硕士生。主要研究方向为纤维素原液着色。
  • 基金资助:
    江苏省自然科学基金项目(BK20160165);江南大学基本科研计划面上培育项目(JUSRP21933)

Effect of low refractive resin on structure and properties of spun-dyed viscose fibers

LIU Xi1,2, WANG Dong1,2, ZHANG Liping1,2, LI Min1,2, FU Shaohai1,2()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2019-08-08 Revised:2020-04-13 Online:2020-07-15 Published:2020-07-23
  • Contact: FU Shaohai

摘要:

针对原液着色粘胶纤维颜色较浅的问题,采用低折射率树脂增深整理粘胶纤维,探讨了树脂种类、树脂用量、轧余率、焙烘时间和焙烘温度对纤维颜色明暗度(L值)、断裂强力和断裂伸长率的影响,借助红外光谱仪、X射线衍射仪、X射线光电子能谱仪、扫描电子显微镜等研究了树脂整理后原液着色粘胶纤维的化学结构、表面元素组成及官能团、结晶性能和表面形貌的变化。结果表明:增深剂质量浓度为80 g/L,轧余率为90%,焙烘温度为150 ℃,焙烘时间为180 s时,原液着色粘胶纤维的L值降低到11.84,断裂强力和断裂伸长率保持率分别为70.62%和70.11%;粘胶纤维的结晶度降低,但纤维表面更加光滑,含硅官能团含量增加。

关键词: 原液着色粘胶纤维, 低折射率树脂, 增深整理, 力学性能

Abstract:

To solve the problem of the pale color, spun-dyed viscose fiber was treated to improve the color depth using low refractive resin. This research investigated the effects of resin type, dosage of resin, rolling ratio, baking time and baking temperature on color brightness (L value), breaking strength and elongation at break of spun-dyed viscose fiber. In addition analytical instruments such as infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy were employed to study varieties of the chemical structures, surface element composition, crystallization performance, surface topography of spun-dyed viscose fibers after resin finishing. The results show that when the dosage of fabric deepening agent, rolling ratio, baking temperature and baking time are set to 80 g/L, 90%, 150 ℃, and 180 s respectively, the L value of the spun-dyed viscose fiber is reduced to 11.84, and the retention rate of breaking strength and elongation at break are 70.62% and 70.11% respectively. After the resin treatment, crystallinity of the spun-dyed viscose fiber decreases and fiber surface becomes smoother, whereas silicon functional groups on fiber surface are increased.

Key words: spun-dyed viscose fiber, low refractive resin, deep finishing, mechanical property

中图分类号: 

  • TS195.6

图1

低折射率树脂增深原液着色粘胶纤维的整理机制"

表1

低折射率树脂种类对原液着色粘胶纤维性能的影响"

树脂名称 L 断裂强力/cN 断裂伸长率/%
未整理 13.18 3.71 18.40
光亮剂SES-35 13.00 3.07 17.70
光亮剂SFS-36 13.02 3.11 18.20
增深剂S-24 13.09 3.03 17.60
增深增艳剂 13.01 3.01 17.40
织物增深剂EC-CD-R 12.95 3.08 17.40

表2

织物增深剂质量浓度对原液着色粘胶纤维性能的影响"

EC-CD-R质量
浓度/(g·L-1)
L 断裂
强力/cN
断裂
伸长率/%
50 13.06 3.13 18.80
60 12.95 3.08 18.40
70 12.78 2.99 17.10
80 12.53 2.93 16.60
90 12.53 2.82 15.80
100 12.51 2.70 14.90

表3

轧余率对原液着色粘胶纤维性能的影响"

轧余率/% L 断裂强力/cN 断裂伸长率/%
60 12.60 3.02 17.80
70 12.57 3.00 16.80
80 12.51 2.93 16.60
90 12.42 2.91 16.00
100 12.42 2.79 14.20

表4

焙烘时间对原液着色粘胶纤维性能的影响"

焙烘时间/s L 断裂强力/cN 断裂伸长率/%
120 12.42 2.91 16.00
150 12.31 2.86 15.60
180 12.19 2.82 14.80
210 12.19 2.75 14.40
240 12.15 2.52 13.20

表5

焙烘温度对原液着色粘胶纤维性能的影响"

焙烘温度/℃ L 断裂强力/cN 断裂伸长率/%
120 12.19 2.82 14.80
130 12.14 2.79 14.20
140 12.05 2.75 13.40
150 11.84 2.62 13.10
160 11.82 2.56 12.60

图2

整理前后原液着色粘胶纤维的红外光谱"

图3

不同质量浓度织物增深剂EC-CD-R整理后原液着色粘胶纤维的扫描电镜照片"

图4

不同质量浓度织物增深剂EC-CD-R整理后原液着色粘胶纤维的X射线衍射曲线"

图5

整理前后原液着色粘胶纤维的表面元素曲线"

图6

整理前后原液着色粘胶纤维的C1s谱图"

[1] 付少海, 张凯, 孙贵生, 等. 纤维素纤维原液着色技术的研究进展[J]. 纺织导报, 2010 (5):73-75.
FU Shaohai, ZHANG Kai, SUN Guisheng, et al. Development of dope dyeing technology for cellulose fiber[J]. China Textile Leader, 2010(5):73-75.
[2] 张凯. Lyocell纤维原液着色用超细颜料的制备及其性能研究[D]. 无锡:江南大学, 2012: 1-2.
ZHANG Kai. Preparation and properties of ultrafine pigment[D]. Wuxi:Jangnan University, 2012: 1-2.
[3] 孙贵生, 万强, 毕其兵. 粘胶纤维原液着色超细紫色色浆分散性及纤维性能[J]. 人造纤维, 2010,40(5):2-4.
SUN Guisheng, WAN Qiang, BI Qibing. Dispersion of ultrafine purple color pigment for spun-dyed viscose fiber and properties of fiber[J]. Artificial Fiber, 2010,40(5):2-4.
[4] WANG Chunxia, DU Changsen, TIAN Anli, et al. Regenerated cellulose fibers spun-dyed with carbon black/latex composite dispersion[J]. Carbohydrate Polymers, 2014,101:905-911.
pmid: 24299855
[5] 许丹, 梅成国, 杜长森, 等. 水性色浆在再生纤维素纤维原液着色中的应用[J]. 纺织科技进展, 2016(8):33-35.
XU Dan, MEI Chengguo, DU Changsen, et al. Application of water-based pigment dispersion in mass coloration for regenerated cellulose fibers[J]. Progress in Textile Technology, 2016(8):33-35.
[6] 梁超. 真丝绸染色增深技术综述[J]. 丝绸, 1997(7):49-53.
LIANG Chao. Summary of silk dyeing and deepening technology[J]. Journal of Silk, 1997(7):49-53.
[7] 刘稀, 王冬, 张丽平, 等. 原液着色粘胶纤维的氧等离子体增深处理[J]. 印染, 2019,45(17):1-6.
LIU Xi, WANG Dong, ZHANG Liping, et al. Deepening effect of spun-dyed viscose fiber with oxygen plasma treatment[J]. China Dyeing & Finishing, 2019,45(17):1-6.
[8] JANG Jinho, JEONG Youngjin. Nano roughening of PET and PTT fabrics via continuous UV/O3 irradiation[J]. Dyes & Pigments, 2006,69(3):137-143.
[9] 程贞娟. 改性聚酯仿真丝织物的碱处理[J]. 纺织学报, 1997,18(1):34-37.
CHENG Zhenjuan. Alkali treatment of modified polyester silk fabric[J]. Journal of Textile Research, 1997,18(1):34-37.
[10] FUJIWARA T, SASAKI H. Bright polyester fiber for hard twisting: Japan, 256280[P]. 1997-09-30.
[11] 马志, 陈国强. 有机硅类增深剂对棉及真丝织物的增深[J]. 印染助剂, 2012,29(9):36-38.
MA Zhi, CHEN Guoqiang. Investigation of the deepening action of organic silicon on cotton and silk[J]. Textile Auxiliaries, 2012,29(9):36-38.
[12] 吴倩眉, 周奥佳, 阎克路. 黑色羊毛织物增深技术研究[J]. 毛纺科技, 2015,43(9):32-35.
WU Qianmei, ZHOU Aojia, YAN Kelu. Study on the darkening finishing of black wool fabric[J]. Wool Textile Journal, 2015,43(9):32-35.
[13] CAI J, ZHANG L, ZHOU J, et al. Microporous membranes prepared from cellulose in NaOH/thiourea aqueous solution[J]. Journal of Membrane Science, 2004,241(2):265-274.
[14] 颜东, 邓继勇, 汪南方, 等. 有机硅改性聚氨酯/丙烯酸酯共聚乳液对棉织物的抗皱整理[J]. 纺织学报, 2018,39(1):89-93, 110.
YAN Dong, DENG Jiyong, WANG Nanfang, et al. Anti-wrinkle finishing of organosilicone modified polyurethane/acrylate copolymer emulsion for cotton fabrics[J]. Journal of Textile Research, 2018,39(1):89-93, 110.
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[3] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[4] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[5] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[6] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[7] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[8] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[9] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[10] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[11] 岳程飞, 丁长坤, 李璐, 程博闻 . 碳化二亚胺/ 羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[12] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[13] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[14] 张娇, 高雪峰, 王玉周, 刘海辉, 张兴祥. 聚酰胺66/氨基化多壁碳纳米管纤维制备及其性能[J]. 纺织学报, 2019, 40(11): 1-8.
[15] 杨帆, 刘俊华, 边昂挺, 王燕萍, 钱琦渊, 倪建华, 夏于旻, 何勇, 王依民. 热处理对热致液晶聚芳酯纤维结构与性能的影响[J]. 纺织学报, 2019, 40(11): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!