纺织学报 ›› 2020, Vol. 41 ›› Issue (07): 93-101.doi: 10.13475/j.fzxb.20190501408
张娟1,2, 郑环达2, 乔燕1, 高世会1,2, 郑来久2()
ZHANG Juan1,2, ZHENG Huanda2, QIAO Yan1, GAO Shihui1,2, ZHENG Laijiu2()
摘要:
针对亚麻粗纱传统煮漂工序的高耗水和环境污染问题,利用超临界CO2代替水介质对亚麻粗纱进行煮漂。系统研究了复配生物酶(木聚糖酶和纤维素酶)质量分数、温度、压力和时间对亚麻粗纱白度的影响,并利用响应面分析法对粗纱煮漂工艺条件进行优化,通过Box-Behnken中心组合实验和响应面法研究了自变量及其交互作用对白度的影响,得到粗纱白度的二次多项式回归方程的预测模型。确定了亚麻粗纱超临界CO2煮漂最佳工艺条件:复配生物酶质量分数为3%,温度为50 ℃,压力为13 MPa,时间为60 min。在最优工艺条件下,超临界CO2煮漂亚麻粗纱与原样相比,白度达到40.8%、残胶率为16.68%、断裂强度为17.12 cN/tex、断裂伸长率为4.23%、分裂度为1 072 Nm。与传统煮漂效果相比,超临界CO2煮漂工艺仍存在一定差距,需进一步提高。
中图分类号:
[1] | 张娟, 高世会, 施楣梧, 等. 亚麻粗纱超临界二氧化碳无水煮漂技术研究进展[J]. 纺织学报, 2017,38(5):172-178. |
ZHANG Juan, GAO Shihui, SHI Meiwu, et al. Research development on the scouring and bleaching of flax rove in supercritical CO2[J]. Journal of Textile Research, 2017,38(5):172-178. | |
[2] | 张娟. 亚麻粗纱超临界二氧化碳无水煮漂技术研究[D]. 大连: 大连工业大学, 2017: 11-13. |
ZHANG Juan. Scouring and bleaching technology of flax rove in supercritical carbon dioxide[D]. Dalian: Dalian Polytechnic University, 2017: 11-13. | |
[3] | ZHANG Juan, ZHENG Huanda, ZHENG Laijiu. Effect of treatment temperature on structures and properties of flax rove in supercritical carbon dioxide[J]. Textile Research Journal, 2018,88(2):155-166. |
[4] | MATTIA O, YVES M G. Scouring of flax rove with the aid of enzymes[J]. Enzyme and Microbial Technology, 2004,34:177-186. |
[5] | DENIZ S O, OZLEM Y C. Characterization, immobilization, and activity enhancement of cellulase treated with supercritical CO2[J]. Cellulose, 2015,22:3619-3631. |
[6] | 彭源德, 刘正初, 唐守伟, 等. 超临界CO2介质的苎麻酶法脱胶研究初探[J]. 纺织学报, 2006,27(8):4-6. |
PENG Yuande, LIU Zhengchu, TANG Shouwei, et al. Preliminary study on ramie retting in supercritical-CO2 with enzymes[J]. Journal of Textile Research, 2006,27(8):4-6. | |
[7] | ZHANG Juan, QIAO Yan, ZU Xiuxia, et al. Cleaner strategy for the scouring and bleaching of flax rove with enzymes in supercritical carbon dioxide[J]. Journal of Cleaner Production, 2019,210:759-766. |
[8] | XU J, XIE X F, WANG J X, et al. Directional liquefaction coupling fractionation of lignocellulosic biomass for platform chemicals[J]. Green Chemistry, 2016,18(10):3124-3138. |
[9] | 赵欣, 罗晶琨, 赵彦松, 等. 一种新型亚麻粗纱前处理工艺的研究[J]. 印染助剂, 2016,33(4):46-50. |
ZHAO Xin, LUO Jingkun, ZHAO Yansong, et al. Study on a novel linen roving pretreatment process[J]. Textile Auxiliaries, 2016,33(4):46-50. | |
[10] | RODRIGO M, SANZ M T, ÁNGELA G S. Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2015,97:51-62. |
[11] | HAMPSON J W, FOGLIA T A. Effect of moisture content on immobilized lipase-catalyzed triacylglycerol hydrolysis under supercritical carbon dioxide flow in a tubular fixed-bed reactor[J]. Journal of the American Oil Chemists' Society, 1999,76:777-781. |
[12] | 赵玉萍, 张娟, 郭雅琳, 等. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012,33(7):24-30. |
ZHAO Yuping, ZHANG Juan, GUO Yalin, et al. Process optimization of ultrasonic washing of feather fibers based on response surface method[J]. Journal of Textile Research, 2012,33(7):24-30. | |
[13] |
JING C L, DONG X F, TONG J M. Optimization of ultrasonic-assisted extraction of flavonoid compounds and antioxidants from alfalfa using response surface method[J]. Molecules, 2015,20(9):15550-15571.
doi: 10.3390/molecules200915550 pmid: 26343617 |
[14] | ALI H, BAHMAN F, AZAR A R. Efficient response surface method for high-dimensional structural reliability analysis[J]. Structural Safety, 2017,68:15-27. |
[15] |
ANBARASAN S, WAHLSTRÖM R, HUMMEL M, et al. High stability and low competitive inhibition of thermophilic thermopolyspora flexuosa GH10 xylanase in biomass-dissolving ionic liquids[J]. Applied Microbiology & Biotechnology, 2017,101(4):1487-1498.
doi: 10.1007/s00253-016-7922-9 pmid: 27770179 |
[16] |
CHANDRALATA R, USHA M V R, MISHRA R. Xylanases of marine fungi of potential use for biobleaching of paper pulp[J]. Journal of Industrial Microbiology & Biotechnology, 2004,31:433-441.
doi: 10.1007/s10295-004-0165-2 pmid: 15372306 |
[17] | JIAN Shi, PATTATHIL S, PARTHASARATHI R, et al. Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency[J]. Green Chemistry, 2016,18(18):4884-4895. |
[18] |
BORUAH P, DOWARAH P, HAZARIKA R, et al. Xylanase from penicillium meleagrinum var. viridiflavum: a potential source for bamboo pulp bleaching[J]. Journal of Cleaner Production, 2016,116:259-267.
doi: 10.1016/j.jclepro.2015.12.024 |
[19] |
VALLS C, VIDAL T. RONCERO M B. Boosting the effect of a laccase-mediator system by using a xylanase stage in pulp bleaching[J]. Journal of Hazardous Materials, 2010,177(1-3):586-592.
doi: 10.1016/j.jhazmat.2009.12.073 pmid: 20116167 |
[20] | 彭源德, 唐守伟, 杨喜爱, 等. 超临界CO2介质的苎麻脱胶酶的影响因素[J]. 纺织学报, 2007,28(5):74-76. |
PENG Yuande, TANG Shouwei, YANG Xiai, et al. Factors influencing retting of ramie with enzymes in SC-CO2[J]. Journal of Textile Research, 2007,28(5):74-76. | |
[21] |
ALI S, KHATRI Z, KHATRI A, et al. Integrated desizing bleaching reactive dyeing process for cotton towel using glucose oxidase enzyme[J]. Journal of Cleaner Production, 2014,66:562-567.
doi: 10.1016/j.jclepro.2013.11.035 |
[22] | ZHANG Juan, ZHENG Huanda, ZHENG Laijiu. A novel eco-friendly scouring and bleaching technique of flax rove using supercritical carbon dioxide fluid[J]. Journal of Engineered Fibers and Fabrics, 2017,12(4):44-51. |
[23] | 王转, 李新平, 杜敏, 等. 内切纤维素酶预处理对漂白马尾松纤维形态和结构的影响[J]. 中国造纸, 2015,34(3):11-16. |
WANG Zhuan, LI Xinping, DU Min, et al. Study on fiber modification of bleached masson pine by endo-cellulase and its mechanism[J]. China Pulp & Paper, 2015,34(3):11-16. | |
[24] |
AKIN D E, MORRISON III W H, GAMBL G R. Effect of retting enzymes on the structure and composition of flax cell walls[J]. Textile Research Journal, 1997,67(4):279-287.
doi: 10.1177/004051759706700407 |
[25] | 易春锋. 亚麻粗纱生物酶与化学联合煮漂工艺研究[D]. 上海: 东华大学, 2017: 38-42. |
YI Chunfeng. The study on combination of enzyme and chemical scouring and bleaching process of flax roving[D]. Shanghai: Donghua University, 2017: 38-42. |
[1] | 向忠, 王宇航, 吴金波, 钱淼, 胡旭东. 过氧化氢检测方法研究进展[J]. 纺织学报, 2020, 41(10): 197-204. |
[2] | 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101. |
[3] | 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90. |
[4] | 高晶, 王璐. 前处理工艺对毛/涤织物疏水改性效果的影响[J]. 纺织学报, 2019, 40(09): 91-96. |
[5] | 张帆, 张儒, 周文常, 周辉, 汪南方. 金属铜配合物催化双氧水用于棉针织物的低温漂白[J]. 纺织学报, 2019, 40(08): 101-108. |
[6] | 唐文君, 彭明华, 向中林, 邵冬燕, 倪佳东, 许长海. 应用阳离子漂白活化剂的棉织物快速轧蒸漂白工艺[J]. 纺织学报, 2019, 40(02): 125-129. |
[7] | 吴臣仁, 吕汪洋, 陈文兴. 铜配合物在棉针织物低温中性漂白中的应用[J]. 纺织学报, 2019, 40(01): 91-96. |
[8] | 黄益 李思琪 阮斐斐 李博 邵建中. 卟啉铁/双氧水体系在棉织物低温催化漂白中的应用[J]. 纺织学报, 2018, 39(06): 75-80. |
[9] | 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86. |
[10] | 蒋佩林 俞晶颖 金平良 黄晨 靳向煜 李健. 脱漂工艺对医用水刺全棉非织造材料性能的影响[J]. 纺织学报, 2017, 38(10): 88-93. |
[11] | 黄益 王权威 孟一丁 聂春玲 周岚 邵建中. 苎麻织物的柠檬酸/多元醇抗皱整理[J]. 纺织学报, 2017, 38(05): 104-109. |
[12] | 向中林 韩雪梅 刘增祥 许长海. 棉织物低温酶氧一浴前处理工艺[J]. 纺织学报, 2017, 38(05): 80-85. |
[13] | 王宗乾 杨海伟 汤立洋 解项东. 漂白羊毛的防紫外线整理及其耐光稳定性能[J]. 纺织学报, 2017, 38(03): 99-107. |
[14] | 黄张秘 周翔 邢志奇 张文龙. 棉织物的聚羧酸无甲醛免烫整理[J]. 纺织学报, 2017, 38(01): 94-99. |
[15] | 郭营 丁若垚 郁崇文. 亚麻原麻及其粗纱生物酶处理工艺条件的优化[J]. 纺织学报, 2016, 37(4): 70-74. |
|