纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 1-8.doi: 10.13475/j.fzxb.20191205408
• 纤维材料 • 下一篇
杨凯1, 张啸梅1, 焦明立2(), 贾万顺1, 刁泉2, 李咏1, 张彩云2, 曹健2
YANG Kai1, ZHANG Xiaomei1, JIAO Mingli2(), JIA Wanshun1, DIAO Quan2, LI Yong1, ZHANG Caiyun2, CAO Jian2
摘要:
为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。
中图分类号:
[1] | ECONOMY J, CLARK R A. Fibers from novolacs: US 3650102[P]. 1972-03-21. |
[2] |
CHEN Bin, YU Junrong, ZHOU Yingsong, et al. Preparation, structure and properties of boron modified high-ortho phenolic fibers[J]. Fibers and Polymers, 2016,17(5):678-686.
doi: 10.1007/s12221-016-5651-4 |
[3] | TIAN X, ZHAO N, WANG K, et al. Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers[J]. RSC Advances, 2015(51):40884-40891. |
[4] | AN Hui, FENG Bo, SU Shi. CO2 capture capacities of activated carbon fibre-phenolic resin composites[J]. Carbon, 2009,47(10):2396-2405. |
[5] |
GUO Zibin, LIU Zhe, YE Li, et al. The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer[J]. Materials Letters, 2015,142:49-51.
doi: 10.1016/j.matlet.2014.11.068 |
[6] | NAN Ding, LIU Jun, MA Wen. Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption[J]. Chemical Engineering Journal, 2015,276:44-50. |
[7] | GAUR V, ASTHANA R, VERMA N. Removal of SO2 by activated carbon fibers in presence of O2 and H2O[J]. Carbon, 2006,44(1):46-60. |
[8] | MA C, SONG Y, SHI J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon, 2013,51(1):290-300. |
[9] | BAI Y, HUANG Z H, KANG F. Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin[J]. Carbon, 2014,66(1):705-712. |
[10] | MA C, SONG Y, SHI J, et al. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors[J]. Materials Letters, 2012,76(6):211-214. |
[11] | JIAO Mingli, YANG Kai, DIAO Quan, et al. Effect of monophenyl borate on properties of high-ortho phenolic fibers[J]. Fibers and Polymers, 2017,18(5):875-881. |
[12] | 董静, 黄建骅, 程岚, 等. 改性棕榈纤维活性炭对活性染料的吸附性能[J]. 纺织学报, 2014,35(4):72-77. |
DONG Jing, HUANG Jianhua, CHENG Lan, et al. Adsorption kinetics of reactive dye onto modified palm fiber activated carbon[J]. Journal of Textile Research, 2014,35(4):72-77. | |
[13] | 付文海. 活性炭材料碘吸附值的分光光度计直接测定法[J]. 新型炭材料, 1998,13(3):38-43. |
FU Wenhai. Direct spectrophotometric measurement of the iodine adsorption value of activated carbon mate-rial[J]. New Carbon Materials, 1998,13(3):38-43. | |
[14] | GRENIER-LOUSTALOT M F, LARROQUE S, GRENIER P. Phenolic resins: 5: solid-state physicochemical study of resoles with variable FP ratios[J]. Polymer, 1996,37(4):639-650. |
[15] | JIAO Mingli, YANG Kai, CAO Jian, et al. Influence of epichlorohydrin content on structure and properties of high-ortho phenolic epoxy fibers[J]. Journal of Applied Polymer Science, 2016,133(5):43375. |
[16] |
WANG L, WANG M, HUANG Z H, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J]. Journal of Materials Chemistry, 2011,45:18295-18299.
doi: 10.1039/c1jm13105b |
[17] |
COSTA L MONTELERA L R D CAMINO G, et al. Structure-charring relationship in phenol-formaldehyde type resins[J]. Polymer Degradation and Stability, 1997,56(1):23-35.
doi: 10.1016/S0141-3910(96)00171-1 |
[18] | 张引枝, 汤忠, 贺福, 等. 由氮吸附等温线表征中孔型活性炭纤维的孔结构[J]. 离子交换与吸附, 1997,13(2):113-119. |
ZHANG Yinzhi, TANG Zhong, HE Fu, et al. Characterizing the pore structure of mesoporous activated carbon fiber using nitrogen adsorption isotherms[J]. Ion Exchange and Adsorption, 1997,13(2):113-119. | |
[19] |
BABEL K, JUREWICZ K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of the Physics and Chemistry of Solids, 2004,65(2):275-280.
doi: 10.1016/j.jpcs.2003.08.023 |
[20] | 代晓青, 肖加余, 曾竟成, 等. 等温DSC法研究RFI用环氧树脂固化动力学[J]. 复合材料学报, 2008,25(4):18-23. |
DAI Xiaoqing, XIAO Jiayu, ZENG Jingcheng, et al. Curing kinetics of epoxy resin for RFI process using isothermal DSC[J]. Acta Materiae Compositae Sinica, 2008,25(4):18-23. | |
[21] | 高尚愚, 周建斌, 左宋林, 等. 碘值、亚甲基蓝及焦糖脱色力与活性炭孔隙结构的关系[J]. 南京林业大学学报(自然科学版), 1998,22(4):23-27. |
GAO Shangyu, ZHOU Jianbin, ZUO Songlin, et al. A study on the relationship between the iodine number, methylene blue adsorption, caramel adsorption and the pore structure of activated carbons[J]. Journal of Nanjing Forestry University (Natural Science Edition), 1998,22(4):23-27. |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[11] | 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144. |
[12] | 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116. |
[13] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
[14] | 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13. |
[15] | 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26. |
|