纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 1-8.doi: 10.13475/j.fzxb.20191205408

• 纤维材料 •    下一篇

高邻位酚醛基纳米活性碳纤维制备及其吸附性能

杨凯1, 张啸梅1, 焦明立2(), 贾万顺1, 刁泉2, 李咏1, 张彩云2, 曹健2   

  1. 1.中原工学院 服装学院, 河南 郑州 450007
    2.中原工学院 材料与化工学院, 河南 郑州 450007
  • 收稿日期:2019-12-24 修回日期:2020-05-11 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 焦明立
  • 作者简介:杨凯(1982—),女,副教授,博士。主要研究方向为功能性材料。
  • 基金资助:
    国家自然科学基金项目(51973246);国家自然科学基金项目(51803245);河南省高校科技创新人才支持计划项目(19HASTIT024);河南省重点科技攻关计划项目(182102210129);河南省高等学校青年骨干教师培养计划项目(2019GGJS145);中原工学院交叉学科团队支持计划项目(2018003)

Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers

YANG Kai1, ZHANG Xiaomei1, JIAO Mingli2(), JIA Wanshun1, DIAO Quan2, LI Yong1, ZHANG Caiyun2, CAO Jian2   

  1. 1. School of Fashion, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
    2. School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2019-12-24 Revised:2020-05-11 Online:2020-08-15 Published:2020-08-21
  • Contact: JIAO Mingli

摘要:

为提高酚醛基纳米活性碳纤维的吸附性能,首先采用乙酸锌、硫酸双催化合成高邻位酚醛树脂,然后配制酚醛/聚乙烯醇缩丁醛(PVB)混合溶液,采用静电纺丝、固化、炭化和活化工艺制备得到柔性高邻位酚醛基纳米活性碳纤维,借助傅里叶变换红外光谱仪、扫描电子显微镜、热重分析仪、比表面积及孔径分析仪对其结构和性能进行测试与分析。结果表明:静电纺丝制备的酚醛初生纤维在溶液固化后,酚环对位取代增加,纤维内发生了分子间交联,但PVB有一定的醇解,使酚醛纤维在炭化过程中低温稳定性下降,而高温残碳率升高,炭化后制备得到多孔碳纤维;活化后得到的高邻位酚醛基纳米活性碳纤维比表面积为1 409 m2/g,其对亚甲基蓝及碘的吸附量分别达到837和2 641 mg/g。

关键词: 高邻位酚醛树脂, 纳米活性碳纤维, 静电纺丝, 吸附性能, 微孔结构

Abstract:

In order to improve the adsorption performance of phenolic resin based activated carbon fibers, the high-ortho phenolic resin was catalyzed by zinc acetate and sulphuric acid, and then mixed with polyvinyl butyral(PVB)as raw material, the flexible high-ortho phenolic resin based activated carbon nanofibers were prepared by a sequence of processes, including electrospinning, consolidation, carbonization and activation, and then the structure and performance were tested and analyzed by Fourier infrared spectrum, scanning electron microscopy, thermogravimetric analysis and specific surface area and pore size distribution analyzer. The results show that the crosslinking structures of the phenolic fibers are formed with the increase of the char yield, and the thermal stability at low temperature decreases with the alcoholysis of PVB. The adsorbing evaluation demonstrates that the high specific surface area of the high-ortho phenolic resin based activated carbon nanofiber reaches 1 409 m2/g, and its adsorption capacity for methylene blue and iodine appears as high as 837 and 2 641 mg/g, respectively.

Key words: high-ortho phenolic resin, activated carbon nanofiber, electrospinning, adsorption performance, microporous structure

中图分类号: 

  • TQ342.86

表1

纺丝原液中PR和PVB的配比"

样品编号 PR质量分数 PVB质量分数
1# 1.1 4.00
2# 2.2 3.75
3# 3.3 3.50
5# 5.5 3.00
7# 7.7 2.50
9# 9.9 2.00

图1

不同制备阶段酚醛试样的红外光谱图"

图2

不同PR和PVB配比的PACF纤维的扫描电镜照片"

图3

不同制备阶段酚醛试样的TG曲线"

图4

不同PR和PVB配比的PCF及 PACF纤维的氮气吸附/脱附等温线和孔径分布 注:图(c)和(d)纵坐标中V为孔容,cm3/g;D为平均孔径,nm。"

表2

不同PR和PVB配比的PCF 和 PACF纤维的孔结构参数"

试样编号 比表面积/
(m2·g-1)
微孔比表面积/
(m2·g-1)
孔容/
(m3·g-1)
微孔孔容/
(m3·g-1)
平均孔
径/nm
介孔比
例/%
PCF-1# 375 313 0.207 0.147 2.22 28.8
PCF-2# 507 422 0.273 0.196 2.16 28.3
PCF-3# 712 648 0.344 0.278 1.94 19.2
PCF-5# 648 594 0.299 0.248 1.85 17.1
PACF-2# 1 302 1 133 0.668 0.523 2.05 27.7
PACF-3# 1 409 1 198 0.771 0.568 2.19 26.4
PACF-5# 773 599 0.434 0.302 2.25 30.5

图5

不同PR和PVB配比的PCF和PACF纤维的碘及亚甲基蓝吸附量"

图6

吸附时间对PACF-3#纤维亚甲基蓝、碘吸附量的影响"

[1] ECONOMY J, CLARK R A. Fibers from novolacs: US 3650102[P]. 1972-03-21.
[2] CHEN Bin, YU Junrong, ZHOU Yingsong, et al. Preparation, structure and properties of boron modified high-ortho phenolic fibers[J]. Fibers and Polymers, 2016,17(5):678-686.
doi: 10.1007/s12221-016-5651-4
[3] TIAN X, ZHAO N, WANG K, et al. Preparation and electrochemical characteristics of electrospun water-soluble resorcinol/phenol-formaldehyde resin-based carbon nanofibers[J]. RSC Advances, 2015(51):40884-40891.
[4] AN Hui, FENG Bo, SU Shi. CO2 capture capacities of activated carbon fibre-phenolic resin composites[J]. Carbon, 2009,47(10):2396-2405.
[5] GUO Zibin, LIU Zhe, YE Li, et al. The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer[J]. Materials Letters, 2015,142:49-51.
doi: 10.1016/j.matlet.2014.11.068
[6] NAN Ding, LIU Jun, MA Wen. Electrospun phenolic resin-based carbon ultrafine fibers with abundant ultra-small micropores for CO2 adsorption[J]. Chemical Engineering Journal, 2015,276:44-50.
[7] GAUR V, ASTHANA R, VERMA N. Removal of SO2 by activated carbon fibers in presence of O2 and H2O[J]. Carbon, 2006,44(1):46-60.
[8] MA C, SONG Y, SHI J, et al. Preparation and one-step activation of microporous carbon nanofibers for use as supercapacitor electrodes[J]. Carbon, 2013,51(1):290-300.
[9] BAI Y, HUANG Z H, KANG F. Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin[J]. Carbon, 2014,66(1):705-712.
[10] MA C, SONG Y, SHI J, et al. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors[J]. Materials Letters, 2012,76(6):211-214.
[11] JIAO Mingli, YANG Kai, DIAO Quan, et al. Effect of monophenyl borate on properties of high-ortho phenolic fibers[J]. Fibers and Polymers, 2017,18(5):875-881.
[12] 董静, 黄建骅, 程岚, 等. 改性棕榈纤维活性炭对活性染料的吸附性能[J]. 纺织学报, 2014,35(4):72-77.
DONG Jing, HUANG Jianhua, CHENG Lan, et al. Adsorption kinetics of reactive dye onto modified palm fiber activated carbon[J]. Journal of Textile Research, 2014,35(4):72-77.
[13] 付文海. 活性炭材料碘吸附值的分光光度计直接测定法[J]. 新型炭材料, 1998,13(3):38-43.
FU Wenhai. Direct spectrophotometric measurement of the iodine adsorption value of activated carbon mate-rial[J]. New Carbon Materials, 1998,13(3):38-43.
[14] GRENIER-LOUSTALOT M F, LARROQUE S, GRENIER P. Phenolic resins: 5: solid-state physicochemical study of resoles with variable FP ratios[J]. Polymer, 1996,37(4):639-650.
[15] JIAO Mingli, YANG Kai, CAO Jian, et al. Influence of epichlorohydrin content on structure and properties of high-ortho phenolic epoxy fibers[J]. Journal of Applied Polymer Science, 2016,133(5):43375.
[16] WANG L, WANG M, HUANG Z H, et al. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes[J]. Journal of Materials Chemistry, 2011,45:18295-18299.
doi: 10.1039/c1jm13105b
[17] COSTA L MONTELERA L R D CAMINO G, et al. Structure-charring relationship in phenol-formaldehyde type resins[J]. Polymer Degradation and Stability, 1997,56(1):23-35.
doi: 10.1016/S0141-3910(96)00171-1
[18] 张引枝, 汤忠, 贺福, 等. 由氮吸附等温线表征中孔型活性炭纤维的孔结构[J]. 离子交换与吸附, 1997,13(2):113-119.
ZHANG Yinzhi, TANG Zhong, HE Fu, et al. Characterizing the pore structure of mesoporous activated carbon fiber using nitrogen adsorption isotherms[J]. Ion Exchange and Adsorption, 1997,13(2):113-119.
[19] BABEL K, JUREWICZ K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of the Physics and Chemistry of Solids, 2004,65(2):275-280.
doi: 10.1016/j.jpcs.2003.08.023
[20] 代晓青, 肖加余, 曾竟成, 等. 等温DSC法研究RFI用环氧树脂固化动力学[J]. 复合材料学报, 2008,25(4):18-23.
DAI Xiaoqing, XIAO Jiayu, ZENG Jingcheng, et al. Curing kinetics of epoxy resin for RFI process using isothermal DSC[J]. Acta Materiae Compositae Sinica, 2008,25(4):18-23.
[21] 高尚愚, 周建斌, 左宋林, 等. 碘值、亚甲基蓝及焦糖脱色力与活性炭孔隙结构的关系[J]. 南京林业大学学报(自然科学版), 1998,22(4):23-27.
GAO Shangyu, ZHOU Jianbin, ZUO Songlin, et al. A study on the relationship between the iodine number, methylene blue adsorption, caramel adsorption and the pore structure of activated carbons[J]. Journal of Nanjing Forestry University (Natural Science Edition), 1998,22(4):23-27.
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[11] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
[12] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[13] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[14] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[15] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!