纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 15-21.doi: 10.13475/j.fzxb.20191202007
CHEN Qian1, LIAO Zhen1, XU Ming2, ZHU Yawei1,3()
摘要:
为提高聚四氟乙烯(PTFE)膜的粘接性能,研究了氧气等离子体处理对PTFE膜剥离强度和水接触角的影响, 并比较了氧气、氮气和氩气等离子体处理PTFE膜粘接强度的差异,借助X射线光电子能谱仪、扫描电子显微镜和原子力显微镜测试了等离子体处理前后PTFE膜表面元素、形态和粗糙度的变化。结果表明:氮气等离子体处理的PTFE膜,其剥离强度较未处理的PTFE膜提高了539.8%,水接触角提高了11.4°,达120.4°;当放电量低于36 kJ 时,经氧气等离子体处理的PTFE膜剥离强度随放电量的增加呈指数增加,继续增加放电量时,PTFE膜表面形成了凹凸沟槽的荷叶形貌,该荷叶形貌决定了膜粘结性和疏水性的强弱。
中图分类号:
[1] | 郭玉海, 朱海霖, 王峰, 等. 聚四氟乙烯滤膜的发展及应用[J]. 纺织学报, 2015,36(9):149-153. |
GUO Yuhai, ZHU Hailin, WANG Feng, et al. Development and application of polytetrafluoroethylene filtration membrane[J]. Journal of Textile Research, 2015,36(9):149-153. | |
[2] | 张恒, 甄琪, 王俊南, 等. 梯度结构耐高温纤维过滤材料的结构与性能[J]. 纺织学报, 2016,37(5):17-22. |
ZHANG Heng, ZHEN Qi, WANG Junnan, et al. Structure and performance of high temperature resistant fibrous filters with gradient structure[J]. Journal of Textile Research, 2016,37(5):17-22. | |
[3] | 罗平艳, 蒋金华, 陈南梁, 等. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018,39(7):50-54. |
LUO Pingyan, JIANG Jinhua, CHEN Nanliang, et al. Development of novel fluoroethylene vinyl ether reinforcement membrane and its mechanical proper-ties[J]. Journal of Textile Research, 2018,39(7):50-54. | |
[4] |
HORI K, FUJIMOTO S, TOGASHI Y, et al. Improvement in molecular-level adhesive strength of PTFE film treated by atmospheric plasma combined processing[J]. IEEE Transactions on Industry Applications, 2018,55(1):825-832.
doi: 10.1109/TIA.2018.2868035 |
[5] | 张浩凡, 宋双, 周明, 等. 不同亲水基团亲水改性PTFE中空纤维膜[J]. 现代化工, 2017,37(11):106-109. |
ZHANG Haofan, SONG Shuang, ZHOU Ming, et al. Modification of PTFE hollow fiber membrane by different hydrophilic groups[J]. Modern Chemical Industry, 2017,37(11):106-109. | |
[6] | 李成才, 王峰, 朱海霖, 等. 双氨基有机硅后交联聚丙烯酸改性PTFE平板膜及其分离性能研究[J]. 膜科学与技术, 2018,38(3):83-90. |
LI Chengcai, WANG Feng, ZHU Hailin, et al. Study on hydrophilic modification and separation performance of PTFE flat membrane by polyacrylic acid post-crosslinked with bisamino organosilicone[J]. Membrane Science and Technology, 2018,38(3):83-90. | |
[7] | LIU K, LEI J, ZHENG Z, et al. The hydrophilicity improvement of polytetrafluoroethylene by Ar plasma jet: the relationship of hydrophilicity, ambient humidity and plasma parameters[J]. Applied Surface Science, 2018,458:183-190. |
[8] | 王振欣, 王月然, 梁小平, 等. 聚合物表面接触角与低温等离子体辐照生成自由基的相关性[J]. 纺织学报, 2011,32(7):1-7. |
WANG Zhenxin, WANG Yueran, LIANG Xiaoping, et al. Correlation between contact angle and radical concentration on polymer surface generated by cold plasma irradiation[J]. Journal of Textile Research, 2011,32(7):1-7. | |
[9] | OHKUBO Y, SHIBAHARA M, ISHIHARA K, et al. Effect of rubber compounding agent on adhesion strength between rubber and heat-assisted plasma-treated polytetrafluoroethylene[J]. The Journal of Adhesion, 2019,95(3):242-257. |
[10] | 王荣昌, 赵悦, 马翠香, 等. 混合单体对等离子体法改性PTFE膜微生物亲和性能的影响[J]. 环境科学研究, 2020,33(2):465-470. |
WANG Rongchang, ZHAO Yue, MA Cuixiang, et al. Effect of mixed monomer on microbial affinity of PTFE membrane with plasma surface modification[J]. Research of Environmental Sciences, 2020,33(2):465-470. | |
[11] | YONG J L, FANG Y, CHEN F, et al. Femtosecond laser ablated durable superhydrophobic PTFE films with micro-through-holes for oil/water separation: separating oil from water and corrosive solutions[J]. Applied Surface Science, 2016,389:1148-1155. |
[12] | 占彦龙, 李文, 李宏, 等. 激光微加工技术制备浸润性可控聚四氟乙烯超疏水表面[J]. 高分子材料科学与工程, 2018,34(4):147-151. |
ZHAN Yanlong, LI Wen, LI Hong, et al. Laser micromachining technology for the preparation of super-hydrophobic surfaces with controllable wettability of PTFE[J]. Polymer Materials Science & Engineering, 2018,34(4):147-151. | |
[13] | NICOLAS V, HOWARD F, FRANCOIS R. Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES-AFM-contact angle and XPS study[J]. Plasma Process Polymers, 2005,2(6):493-500. |
[14] | WILSON D J, WILLIAMS R L, POND R C. Plasma modification of PTFE surfaces: part I: surfaces immediately following plasma treatment[J]. Surface and Interface Analysis, 2001,31:385-396. |
[15] | 郝致远, 汲胜昌, 宋莹. 氩等离子体射流对聚四氟乙烯表面改性的研究[J]. 西安交通大学学报, 2014,48(4):59-67. |
HAO Zhiyuan, JI Shengchang, SONG Ying. Experimental research on surface modification of polytetrafluoroethylene by Ar atmospheric pressure plasma jet[J]. Journal of Xi'an Jiaotong University, 2014,48(4):59-67. | |
[16] | ALENKI V, MIRAN M, ANTON Z. XPS characterization of PTFE after treatment with RF oxygen and nitrogen plasma[J]. Surface & Interface Analysis, 2008,40:661-663. |
[17] |
VANDENCASTEELE N, BROZE B, COLLETTE S, et al. Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synjournal[J]. Langmuir, 2010,26(21):16503-16509.
doi: 10.1021/la101380j pmid: 20973585 |
[18] | VESEL A, MOZETIC M, BALAT-PICHELIN M. Oxygen atom density in microwave oxygen plasma[J]. Vacuum, 2007,81(9):1088-1093. |
[1] | 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117. |
[2] | 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187. |
[3] | 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118. |
[4] | 张美玲 沈忆文 王瑞 李先锋 郑广伟. 芳纶纤维的冷等离子体处理及其老化性能[J]. 纺织学报, 2018, 39(11): 73-78. |
[5] | 罗平艳 蒋金华 陈南梁 胡淳 崔鹏. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018, 39(07): 50-54. |
[6] | 王瑞 孙艳丽 刘星 杨华 李博. 碳纳米管改性相变微胶囊的力学与热学性能[J]. 纺织学报, 2018, 39(02): 119-125. |
[7] | 姚鹏成 夏鑫. 聚乳酸包覆相变材料复合织物的制备及其性能[J]. 纺织学报, 2017, 38(01): 67-72. |
[8] | 沈丽;戴瑾瑾;陈全伦. 氟碳化合物等离子体处理对纯棉织物表面性质的影响[J]. 纺织学报, 2009, 30(12): 71-75. |
[9] | 朱旭朝;熊杰;许淑燕;宋叶萍;霍鹏飞. UHMWPE纤维处理条件对其性能的影响[J]. 纺织学报, 2009, 30(06): 10-14. |
[10] | 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60. |
[11] | 谢洪德;王红卫;李宁;张卫东. 柞蚕丝织物等离子体处理接枝后性能变化研究[J]. 纺织学报, 2005, 26(5): 28-30. |
[12] | 应宗荣;吴大诚. 水溶性聚酯的溶液性质和粘结性能[J]. 纺织学报, 2000, 21(05): 50-52. |
[13] | 何瑶. 低温氧等离子体处理羊毛的经时效应的研究[J]. 纺织学报, 1998, 19(04): 41-42. |
|