纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 152-157.doi: 10.13475/j.fzxb.20200203207

• 专栏:医用防护纺织品 • 上一篇    下一篇

口罩过滤效率检测用颗粒物粒径的换算和标准比对

杨小兵1,2(), 程钧3, 张守鑫1,2, 姚红4, 陆林1,2, 丁松涛1,2   

  1. 1.军事科学院防化研究院 国民核生化灾害防护国家重点实验室, 北京 100191
    2.雾霾健康效应与防护北京市重点实验室, 北京 100191
    3.中钢集团武汉安全环保研究院有限公司,湖北 武汉 430081
    4.3M中国有限公司, 北京 100176
  • 收稿日期:2020-02-17 修回日期:2020-05-07 出版日期:2020-08-15 发布日期:2020-08-21
  • 作者简介:杨小兵(1976—),男,副研究员,博士。主要研究方向为核生化防护技术与装备、功能材料及标准化。E-mail: xbyoung2001@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFC0804907);国家标准制修订计划项目(201311680-Q-450);核化应急救援科研基金项目(W3106)

Particle size conversion for mask filter efficiency test and comparability of different standards

YANG Xiaobing1,2(), CHENG Jun3, ZHANG Shouxin1,2, YAO Hong4, LU Lin1,2, DING Songtao1,2   

  1. 1. State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Military Science Academy, Beijing 100191, China
    2. Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, Beijing 100191, China
    3. Sinosteel Wuhan Safety & Environment Protection Research Institute Co., Ltd., Wuhan, Hubei 430081, China
    4. 3M China Company, Beijing 100176, China
  • Received:2020-02-17 Revised:2020-05-07 Online:2020-08-15 Published:2020-08-21

摘要:

为理清口罩过滤效率检测用颗粒物粒径的相关科学概念,介绍了GB 2626—2006《呼吸防护用品 自吸过滤式防颗粒物呼吸器》中所用颗粒物粒径及粒径分布的基本概念和描述方法。在回顾呼吸性粉尘和空气动力学质量中位径(MMAD)概念的基础上,重点介绍了计数中位径(CMD)换算为MMAD的方法,通过计算证明GB 2626—2006中过滤效率测试用颗粒物的MMAD为0.3 μm,该粒径为最具有穿透性的颗粒物粒径。应用该换算方法,探讨了AQ 1114—2014《煤矿用自吸过滤式防尘口罩》中以MMAD大于7 μm粗粉尘颗粒物测试过滤效率的局限性,并采用MMAD为0.3 μm 的颗粒物评估典型口罩材料的过滤效率,为正确评价国内外防颗粒物口罩标准提供专业指导。

关键词: 口罩, 颗粒物防护, 粒径分布, 空气动力学质量中位径, 最易穿透粒径, 过滤效率, 标准

Abstract:

To clarify the related scientific concept of particle size used in testing mask filter efficiency, this paper systematically introduced the basic concepts and descriptive methods of particle size and particle size distribution for filter efficiency test in the Chinese national standard GB 2626—2006 "Respiratory protective equipment-non-owered air-purifying particle respirator". On the basis of reviewing the concepts of respirable dust and mass median aerodynamic diameter(MMAD), emphasis was laid on the calculation method for converting the count median diameter (CMD) into MMAD, which proved that the CMD provided in GB 2626—2006 meets the requirement of MMAD 0.3 μm, the most penetrating particle size, used for the filter efficiency test. Based on the conversion method, the dust size with MMAD higher than 7 μm used in AQ 1114—2014 "Self-inhalation filter type dust respirator for coal mines" for filter efficiency test was discussed. The particle filter efficiency of typical filtration media used in masks was tested using the 0.3 μm particles. It provided professional guidance for the correct evaluation of domestic and foreign standards for particle masks.

Key words: mask, particle protection, particle size distribution, mass median aerodynamic diameter, most penetrating particle size, filter efficiency, standard

中图分类号: 

  • C976.2

图1

典型的颗粒物粒径分布"

图2

取对数后的颗粒物粒径分布"

图3

不规则微粒的物理直径和ds、da的关系"

表1

世界各国防颗粒物呼吸器标准中过滤效率测试用颗粒物特性统计"

标准名称 标准国别
与地区
测试用颗粒物特性
ISO 16900—3:2012《呼吸保护装置 试验方法和试验设备 第3部分:粒子滤波渗透的测定》 国际 NaCl颗粒:CMD为(0.06~0.10) μm,GSD为1.4~1.8;DOP颗粒:CMD为(0.16~0.21) μm,GSD为1.4~1.8。
EN 149:2001+A1 2009《呼吸防护装置 防护颗粒的过滤半面罩 要求、测试、标记》 欧盟
(34个国家)
NaCl颗粒:MMD为0.6 μm,尺寸分布为(0.045~1.2) μm;石腊颗粒:ds为0.4 μm,尺寸分布为(0.045~2.0) μm。
42 CFR 84《美国呼吸护具标准》 美国 同GB 2626—2006
AS/NZS 1716: 2012《呼吸保护装置》 澳大利亚/
新西兰
NaCl颗粒:MMD为(0.3~0.6) μm,尺寸分布为(0.02~2.0) μm。

图4

AQ 1114—2014用于测试防尘口罩过滤效率的粉尘粒径分布示意图"

图5

过滤效率与纤维直径的关系"

表2

口罩材料叠加层数对过滤效率、阻力的影响"

样品层数 过滤效率/% 阻力/Pa
1 42.800 86
2 67.200 164
3 81.200 241
4 89.400 317
5 94.460 404
6 96.610 474
7 98.070 555
8 98.920 624
9 99.360 697
10 99.643 775
11 99.803 852
12 99.888 924
13 99.935 991
14 99.962 1 061
15 99.979 1 140
16 99.988 1 203
[1] 程钧, 杨小兵, 姚红, 等. GB 2626—2006标准修订系列研究第1部分:防颗粒物呼吸器用户问卷调查结果分析及其对标准修订的影响[J]. 中国标准化, 2018(14):248-252.
CHENG Jun, YANG Xiaobing, YAO Hong, et al. Studies upon GB 2626-2006 upgrading: part 1: particle respirator user survey result analysis and its impact to the future standard[J]. China Standardization, 2018(14):248-252.
[2] 中华人民共和国国家卫生健康委. 新型冠状病毒感染的肺炎诊疗方案(试行第五版)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm.
National Health Commission of the People's Republic of China. New novel coronavirus pneumonia diagnosis and treatment plan (trial version fifth)[EB/OL]. (2020-02-05)[2020-02-06]. http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm.
[3] STEVENS G A, MOYER E S. "Worst case" aerosol testing parameters: I: sodium chloride and dioctyl phthalate aerosol filter efficiency as a function of particle size and flow rate[J]. American Industrial Hygiene Association Journal, 1989,50(5):257-264.
doi: 10.1080/15298668991374615 pmid: 2729101
[4] WILLIAM C H. Aerosol technology, properties, behavior, and measurement of airborne particles[M]. 2nd ed. New York: Wiley-Interscience Press, 1999: 78, 98.
[5] LEE K W LIU B Y H. On the minimum efficiency and the most penetrating particle size for fibrous filters[J]. Journal of the Air Pollution Control Association, 1980,30(4):377-381.
doi: 10.1080/00022470.1980.10464592
[6] HINDS W C, MACHER J M, FIRST M W. Size distribution of aerosols produced by the laskin aerosol generator using substitute materials for DOP[J]. American Industrial Hygiene Association Journal, 1983,44(7):495-500.
[7] 吕爱民. 防尘口罩的问题及整改措施[J]. 劳动保护, 2011(5):86-87.
LV Aimin. Problems of dust masks and correction measures[J]. Labor Protection, 2011 (5):86-87.
[8] 杨文芬, 宫国卓, 吕爱民, 等. 解析《煤矿用自吸过滤式防尘口罩》标准[J]. 现代职业安全, 2015 (1):107-109.
YANG Wenfen, GONG Guozhuo, LV Aimin, et al. Analysis of the standard of "self-inhalation filter type dust respirator for coal mine"[J]. Modern Occupational Safety, 2015(1):107-109.
[9] 丁松涛, 姚红, 房鹤. 解析霾与公众防护[J]. 中国个体防护装备, 2015(2):21-25.
DING Songtao, YAO Hong, FANG He. Haze and general public's protection[J]. China Personal Protective Equipment, 2015(2):21-25.
[10] 马子燕. 显微镜法测定粉尘分散度存在的问题[J]. 工业安全与防尘, 1999,10:43-44.
MA Ziyan. The problem of the measurement method of the dust decentralization by the microscope in the application[J]. Industrial Safety and Dust Control, 1999,10:43-44.
[11] DENEE P B. Mine dust characterization using the scanning electron microscope[J]. American Industrial Hygiene Association Journal, 1972,33(10):654-660.
doi: 10.1080/0002889728506723 pmid: 4660795
[12] 姚红, 丁松涛. 探讨高浓度粉尘环境下的呼吸防护[C]// 中国职业安全健康协会. 中国职业安全健康协会2011年学术年会论文集, 北京: 煤炭工业出版社, 2011: 429-434.
YAO Hong, DING Songtao. The respiratory protection in high concentration dust[C]// China Occupational Safety and Health Association. 2011 Annual Conference of COSHA. Beijing: China Coal Industry Publishing House, 2011: 429-434.
[13] 张星, 刘金鑫, 张海峰, 等. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020,41(3):168-174.
ZHANG Xing, LIU Jinxin, ZHANG Haifeng, et al. Preparation technology and research status of nonwoven filtration materials for individual protective masks[J]. Journal of Textile Research, 2020,41(3):168-174.
[14] 周川, 杨小兵, 颜晓珊, 等. 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018,49(5):5056-5060, 5069.
ZHOU Chuan, YANG Xiaobing, YAN Xiaoshan, et al. Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018,49(5):5056-5060, 5069.
[15] TSAI P Y. Theoretical and experimental investigation on the relationship between the nonwoven structure and the web properties[J]. International Nonwovens Journal, 2002(4):33-36.
[1] 赵博宇, 梁鑫花, 丛洪莲. 电脑横机编织三维全成形口罩结构建模与工艺实践[J]. 纺织学报, 2020, 41(12): 59-65.
[2] 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(08): 172-178.
[3] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(08): 158-165.
[4] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168-174.
[5] 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113.
[6] 杨小兵, 杨光, 谭雯莉, 郭婧雯, 丁松涛, 钟近艺. 化学防护服国际标准最新动态对我国GB 24539—2009修订的影响[J]. 纺织学报, 2019, 40(06): 165-170.
[7] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
[8] 周亚勤, 汪俊亮, 鲍劲松, 张洁. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(04): 145-151.
[9] 胡雪敏, 杨文秀, 李腾. 氧化石墨烯/聚偏二氟乙烯复合纤维过滤膜的制备及其过滤性能[J]. 纺织学报, 2019, 40(04): 32-37.
[10] 王宗乾, 王邓峰, 周杭, 李俊. 超声波辅助对乳化交联工艺制备丝素蛋白微球形貌的影响[J]. 纺织学报, 2019, 40(02): 119-124.
[11] 杜劲松 郑梦林 戴玉芳 李依璇. 服装模板工序的动作编码[J]. 纺织学报, 2018, 39(09): 109-114.
[12] 李莹 叶曦雯 牛增元 刘坤. 禁用偶氮着色剂检测新版国际标准剖析[J]. 纺织学报, 2018, 39(08): 95-99.
[13] 胡旭东 沈春娅 彭来湖 汝欣. 针织装备的智能制造及互联互通标准验证[J]. 纺织学报, 2017, 38(10): 172-177.
[14] 吴雄英 张亚雯 袁志磊. 纺织品电磁屏蔽效能评价标准的现状分析[J]. 纺织学报, 2016, 37(2): 170-176.
[15] 钱幺 赵宝宝 钱晓明. 强制静电下导电滤料的过滤效率[J]. 纺织学报, 2016, 37(12): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!