纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 188-196.doi: 10.13475/j.fzxb.20200403209

• 专栏:医用防护纺织品 • 上一篇    

医用防护服用非织造材料的研究进展

安琪1,2, 付译鋆1,2, 张瑜1,2, 张伟1,2, 王璐3, 李大伟1,2()   

  1. 1.南通大学 纺织服装学院, 江苏 南通 226019
    2.安全防护用特种纤维复合材料研发国家地方联合工程研究中心, 江苏 南通 226019
    3.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2020-04-13 修回日期:2020-05-18 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 李大伟
  • 作者简介:安琪(1996—),女,硕士生。主要研究方向为医用非织造材料。
  • 基金资助:
    江苏省自然科学基金项目(BK20190927);纺织面料技术教育部重点实验室开放课题资助项目(W201905)

Research progress of nonwovens for medical protective garment

AN Qi1,2, FU Yijun1,2, ZHANG Yu1,2, ZHANG Wei1,2, WANG Lu3, LI Dawei1,2()   

  1. 1. College of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong, Jiangsu 226019, China
    3. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-04-13 Revised:2020-05-18 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Dawei

摘要:

为推进非织造材料在医用防护材料领域的应用,系统综述了医用防护服用非织造材料的发展及新型非织造防护材料的种类和应用。介绍了纺粘非织造材料、熔喷非织造材料、纺粘-熔喷-纺粘复合非织造材料和闪蒸非织造材料的制备方法与防护特性,然后分别从覆膜非织造材料、复合非织造材料和功能非织造材料3个方面分析新型非织造防护材料的原理及性能特点,重点剖析不同防护材料的结构及其对病毒阻隔性和吸湿透气的影响。阐述了基于智能监测、温湿度调节和自消毒、自清洁智能材料在防护服上的应用,指出医用防护服未来有望向高防护性、高舒适性和智能化发展。

关键词: 医用防护服, 非织造材料, 病毒阻隔性, 舒适性, 智能防护

Abstract:

In order to promote the application of nonwovens for medical protective materials, this paper systematically reviewed on the development of nonwovens for medical protective garment as well as on the types and applications of nonwovens as novel protective materials. The preparation methods and protective properties of spun-bonded, meltblown, spunbond-meltblown-spunbond composite and flash spinning nonwovens were introduced, and the mechanisms and characteristics of novel nonwoven protective materials were discussed from three aspects, i.e. film covered nonwovens, composite nonwovens and functional nonwovens, focusing on the influence of structure of different protective materials on the virus blockage, moisture absorption and air permeability. In addition, the applications of intelligent monitoring, temperature or humidity regulation, and selfvdisinfection, self-cleaning intelligent materials in protective garment were described. The future medical protective garments are expected to be developed towards the direction of high protection, high comfort and intelligence.

Key words: medical protective garment, nonwoven material, virus barrier property, comfort, intelligent protection

中图分类号: 

  • TS174

图1

纺粘非织造材料微观形貌"

图2

熔喷非织造材料生产工艺流程"

图3

含氟整理剂处理前后SMS复合非织造材料的微观形貌"

图4

闪蒸非织造材料生产工艺流程"

图5

三明治结构防护服材料示意图"

图6

SFS抗病毒防护服织物结构示意图"

图7

橘瓣型纺粘纤维结构与纺粘/水刺复合非织造材料形貌"

图8

拒液涂层整理医用防护服面料结构"

图9

整理前后试样抗菌效果对比"

图10

不同整理工艺PP熔喷非织造材料扫描电镜及接触角照片"

图11

碳纳米管导湿微孔膜材料"

[1] 姜慧霞. 医用防护服材料的性能评价研究[D]. 天津:天津工业大学, 2008: 3.
JIANG Huixia. The properties of medical protective materials and their evaluation[D]. Tianjin: Tiangong University, 2008: 3.
[2] 郎楠, 袁媛, 周静. 医用个体防护装备国内外标准的比较[J]. 职业卫生与应急救援, 2020,38(2):112-115.
LANG Nan, YUAN Yuan, ZHOU Jing. Comparison of domestic and foreign standards for medical personal protective equipment[J]. Occupational Health and Emergency Rescue, 2020,38(2):112-115.
[3] 汪邦芳, 卢洪洲. 高致病性传染病的医院感染控制:以上海市公共卫生临床中心为例[J]. 上海预防医学, 2019,31(12):1027-1030.
WANG Bangfang, LU Hongzhou. Nosocomial infection control in management of highly pathogenic infectious diseases[J]. Shanghai Journal of Preventive Medicine, 2019,31(12):1027-1030.
[4] 李晔, 蔡冉, 陆烨. 应对新型冠状病毒肺炎防护服的选择和使用[J]. 中国感染控制杂志, 2020,19(2):117-122.
LI Ye, CAI Ran, LU Ye. Selection and use of protective clothing in novel coronavirus pneumonia epidemic[J]. Chinese Journal of Infection Control, 2020,19(2):117-122.
[5] 魏聪, 徐玉茵, 周静, 等. 阻干态微生物穿透试验及仪器研究[J]. 中国医疗设备, 2018,33(9):59-60, 70.
WEI Cong, XU Yuyin, ZHOU Jing, et al. Research on resistance to dry microbial penetration detection and the equipments[J]. China Medical Devices, 2018,33(9):59-60,70.
[6] 张爱珍, 李静. 不同材质手术衣术中细菌阻隔性的比较研究[J]. 中国医疗器械信息, 2018,24(14):58-59.
ZHANG Aizhen, LI Jing. Comparative study of bacterial barrier in different materials of surgical clothes[J]. China Medical Device Information, 2018,24(14):58-59.
[7] 刘忠友, 郑仰煜, 罗庆祥, 等. 医用非织造布阻隔效果测试分析[J]. 产业用纺织品, 2017,35(9):24-27.
LIU Zhongyou, ZHENG Yangyu, LUO Qingxiang, et al. Analysis of barrier effect test for medical nonwovens[J]. TechnicaI Textiles, 2017,35(9):24-27.
[8] BALCI K, SELCEN F. Isolation gowns in healthcare settings: laboratory studies, regulations and standards, and potential barriers of gown selection and use[J]. American Journal of Infection Control, 2016,44(1):104-111.
doi: 10.1016/j.ajic.2015.07.042 pmid: 26391468
[9] 姜濛. 基于纺织品的个人卫生防护品研发新趋势[J]. 中国纤检, 2019(8):110-112.
JIANG Meng. A new trend of R & D for personal health protection products based on textiles[J]. China Fiber Inspection, 2019 (8):110-112.
[10] 王洁. “三拒一抗/单向导湿”非织造手术衣材料的后整理工艺研究[D]. 上海: 东华大学, 2014: 13-17.
WANG Jie. Study on "three repellent and antistatic/directional water-transfer" finishing of non-woven fabricfor surgical gown[D]. Shanghai: Donghua University, 2014: 13-17.
[11] 阳智, 石煜, 沈兰萍, 等. 天然抗菌微胶囊的制备与应用[J]. 针织工业, 2020(4):54-57.
YANG Zhi, SHI Yu, SHEN Lanping, et al. Preparation and application of natural antibacterial microcap-sules[J]. Knitting Industries, 2020(4):54-57.
[12] 黄景莹(译). 高效阻隔面料带来医用防护飞跃[J]. 非织造布, 2012(5):33.
HUANG Jingying (Translating). Medical protection leap brought by efficient barrier fabric[J]. Nonwovens, 2012(5):33.
[13] 司徒元舜. 医疗卫生非织造材料的加工: 原料、工艺及装备[J]. 纺织导报, 2017(6):83-86.
SITU Yuanshun. Processing of medical and health nonwovens: raw materials, technology and equip-ment[J]. China Textile Leader, 2017 (6):83-86.
[14] 齐晶晶. 仿3S柔滑爽卫生用热风非织造材料的研发[D]. 天津:天津工业大学, 2019: 12.
QI Jingjing. Research and development of silky and slippery hot air nonwovens imitating 3S[D]. Tianjin: Tiangong University, 2019: 12.
[15] 李晶. 基于医用纺熔复合非织造脂肪移植滤料制备及性能研究[D]. 上海: 东华大学, 2018: 6-7.
LI Jing. Preparation and properties of medical spunbond-meltblown composite nonwoven fat graft filter[D]. Shanghai: Donghua University, 2018: 6-7.
[16] 刘培杰. 芳纶纳米纤维涂覆非织造滤材在高温过滤领域的应用[D]. 上海: 东华大学, 2018: 2.
LIU Peijie. Application of aramid nanofiber coated nonwovens for high temperature filtration[D]. Shanghai: Donghua University, 2018: 2.
[17] YAN Y R, TSAI P P. Prediction of hydrostatic pressure and blood penetration of medical protective clothing[J]. Journal of Engineered Fibers and Fabrics, 2016,11(1):17-22.
[18] 李娜, 钱晓明. 医用非织造材料的发展与应用[J]. 纺织导报, 2017(3):67-70.
LI Na, QIAN Xiaoming. Development and application of medical nonwovens[J]. China Textile Leader, 2017(3):67-70.
[19] 刘元新, 春育. 非织造布后整理工艺及设备的新进展[J]. 纺织导报, 2018(10):86-91.
LIU Yuanxin, CHUN Yu. Progress in finishing technology and equipment for nonwovens[J]. China Textile Leader, 2018 (10):86-91.
[20] 刘亚, 吴汉泽, 程博闻, 等. 非织造医用防护材料技术进展及发展趋势[J]. 纺织导报, 2017(S1):78-82.
LIU Ya, WU Hanze, CHENG Bowen, et al. Technological progress and developing trends of nonwoven medical protective materials[J]. China Textile Leader, 2017(S1):78-82.
[21] XU H, WANG Y J, WANG F, et al. Formation and characterization of polytetrafluoroethylene nanofiber membranes for high-efficiency fine particulate filtra-tion[J]. RSC Advances, 2019,9(24):13631-13645.
doi: 10.1039/C9RA01643K
[22] AKAMATSU K, KAGAMI Y, NAKAO S. Effect of BSA and sodium alginate adsorption on decline of filtrate flux through polyethylene microfiltration membranes[J]. Journal of Membrane Science, 2020,594:117469.
[23] STEPHENIE S. Gore chempak CBRN apparel[J]. Law & Order, 2016,64(1):34-37.
[24] PARTHASARATHI V, THILAGAVATHI G. Developing antiviral surgical gown using nonwoven fabrics for health care sector[J]. African Health Sciences, 2013,13(2):327-332.
doi: 10.4314/ahs.v13i2.18 pmid: 24235931
[25] 赵晓明, 刘宝成. 透气式防毒服的发展现状及最新研究进展[J]. 材料导报, 2018,32(17):3083-3089, 3098.
ZHAO Xiaoming, LIU Baocheng. Permeable protective suit: status quo and latest research progress[J]. Materials Review, 2018,32(17):3083-3089, 3098.
[26] 彭鹏, 常敬颖, 张瑜, 等. 聚丙烯超细纤维与活性炭颗粒复合空气滤材的制备[J]. 化工新型材料, 2015,43(11):71-73.
PENG Peng, CHANG Jingying, ZHANG Yu, et al. Preparation of polypropylene superfine fiber and activated carbon particles composite air filter material[J]. New Chemical Materials, 2015,43(11):71-73.
[27] 赵宝宝, 钱幺, 钱晓明, 等. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018,39(5):61-66.
ZHAO Baobao, QIAN Yao, QIAN Xiaoming, et al. Preparation and properties of bicomponent spunbond- spunlance nonwoven materials with gradient struc-ture[J]. Journal of Textile Research, 2018,39(5):61-66.
[28] 倪冰选, 焦晓宁. 纺粘水刺复合非织造布的发展概况[J]. 产业用纺织品, 2010,28(1):4-7.
NI Bingxuan, JIAO Xiaoning. The development of spunbond-spunlaced composite nonwovens[J]. Technical Textiles, 2010,28(1):4-7.
[29] GUO Y H, HE W D, LIU J X. Electrospinning polyethylene terephthalate/SiO2 nanofiber composite needle felt for enhanced filtration performance[J]. Journal of Applied Polymer Science, 2020,137(2):48282.
[30] FACCINI M, VAQUERO C, AMANTIA D. Development of protective clothing against nanoparticle based on electrospun nanofibers[J]. Journal of Nanomaterials, 2012(2):892-894.
[31] 张超, 秦挺鑫, 申世飞, 等. 国内外防护服标准比对研究[J]. 纺织导报, 2019(1):96-99.
ZHANG Chao, QIN Tingxin, SHEN Shifei, et al. Comparative study on the protective clothing standards at home and abroad[J]. China Textile Leader, 2019(1):96-99.
[32] 王启, 姜慧婧, 杨玮婧, 等. 非织造布的应用现状及前景[J]. 合成材料老化与应用, 2017,46(6):103-107.
WANG Qi, JIANG Huijing, YANG Weijing, et al. Application status and prospect of nonwovens[J]. Synthetic Materials Aging and Application, 2017,46(6):103-107.
[33] TANG X, ZHANG X, ZHANG H, et al. Facile dip-coating process towards multifunctional nonwovens:robust noise reduction, abrasion resistance and antistatic electricity[J]. Textile Research Journal, 2018,88(22):2568-2578.
[34] MORADI F, AHMADI M S, MASHROTEH H. Development of tri-layer breathable fluid barrier nonwoven fabrics for surgical gown applications[J]. Journal of The Textile Institute, 2019,110(11):1545-1551.
[35] 罗勤. 感冒了帮你鉴别细菌感染和病毒感染[J]. 家庭医学(下), 2018(7):54.
LUO Qin. A cold helps you distinguish between bacterial infection and viral infection[J]. Family Medicine(Ⅱ), 2018(7):54.
[36] 谢柠蔚, 张瑜, 张广宇. 纳米氧化锌对热风非织造材料抗菌性的影响[J]. 棉纺织技术, 2017,45(11):18-20.
XIE Ningwei, ZHANG Yu, ZHANG Guangyu. Influence of nano ZnO on the antibacterial property of hot-air ES nonwovens[J]. Cotton Textile Technology, 2017,45(11):18-20.
[37] 魏发云, 张伟, 邹学书, 等. 等离子体诱导丙烯酸接枝改性聚丙烯熔喷非织造材料[J]. 纺织学报, 2017,38(9):109-114.
WEI Fayun, ZHANG Wei, ZOU Xueshu, et al. Grafted modification of polypropylene melt-blown nonwoven materials with acrylic acid induced by plasma[J]. Journal of Textile Research, 2017,38(9):109-114.
[38] LI Q, TAO X M. Three-dimensionally deformable, highly stretchable, permeable, durable and washable fabric circuit boards[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2014,470(2171):20140472.
[39] 黄倩倩, 李俊, 王云仪. 电子服装性能及其集成技术研究进展[J]. 上海纺织科技, 2018,46(6):1-6.
HUANG Qianqian, LI Jun, WANG Yunyi. Research progress of electronic clothing properties and integration technology[J]. Shanghai Textile Science & Technology, 2018,46(6):1-6.
[40] 段双亮. 基于人工智能的碳纳米管及其复合材料的介电性能和电磁屏蔽效能研究[D]. 西安: 西安电子科技大学, 2015: 4.
DUAN Shuangliang. Study of dielectric properties and electromagnetic shielding effectiveness of carbon nanotubes and their composite materials based on artificial intelligence[D]. Xi'an: Xidian University, 2015: 4.
[41] 包世勇. 聚苯胺/金纳米颗粒电化学传感器修饰材料的制备及应用[D]. 杭州: 浙江理工大学, 2015: 8-9.
BAO Shiyong. Preparation of PANI/Au electrochemical modified nanomaterials and their applications[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 8-9.
[42] 钟卫兵, 卿星, 王跃丹. 纳米技术在生化防护服中的应用及研究进展[J]. 山东纺织经济, 2016,227(1):34-36.
ZHONG Weibing, QING Xing, WANG Yuedan. Application and research progress of nanotechnology in biochemical protective clothing[J]. Shandong Textile Economy, 2016,227(1):34-36.
[43] 朱孝明, 代子荐, 赵奕, 等. 改性二氧化钛/纺黏-熔喷非织造抗菌复合滤材的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):196-203.
ZHU Xiaoming, DAI Zijian, ZHAO Yi, et al. Fabrication and properties of modified TiO2/spun-bonded and melt-blown nonwoven antibacterial composite filter[J]. Journal of Donghua University (Natural Science Edition), 2019,45(2):196-203.
[44] 王丹, 阮梦瑶, 赵保军, 等. 超疏水纯棉大网孔水刺材料的制备及性能[J]. 东华大学学报(自然科学版), 2019,45(2):181-188.
WANG Dan, RUAN Mengyao, ZHAO Baojun, et al. Preparation and properties of super-hydrophobic meshed cotton spunlace material[J]. Journal of Donghua University (Natural Science Edition), 2019,45(2):181-188.
[1] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[2] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28.
[3] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[4] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[5] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[6] 闵小豹, 潘志娟. 国内外医用防护服结构与功能的比较与分析[J]. 纺织学报, 2020, 41(08): 172-178.
[7] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[8] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/ 聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32.
[9] 刘禹豪, 孙辉, 王捷琪, 于斌. TiO2 / MIL-88B( Fe) / 聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(02): 95-102.
[10] 肖平, 张昭华, 周莹, 刘佳锴, 唐颢源. 手臂活动角度对服装局部热阻的影响[J]. 纺织学报, 2020, 41(02): 109-114.
[11] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[12] 董科, 张玲, 范佳璇, 李梦婕, 梅琳, 肖学良. 织物电极监测心电信号与穿戴压力作用机制分析[J]. 纺织学报, 2019, 40(09): 75-82.
[13] 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34.
[14] 齐国瑞, 柯勤飞, 李祖安, 黄族健, 靳向煜, 黄晨. 纯棉水刺非织造材料的单向导水无氟整理[J]. 纺织学报, 2019, 40(07): 119-127.
[15] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!