纺织学报 ›› 2020, Vol. 41 ›› Issue (08): 81-87.doi: 10.13475/j.fzxb.20190406807

• 染整与化学品 • 上一篇    下一篇

织物基载体在含盐废水蒸发处理中的应用

刘捷1,2, 仝胜录1,2, 李小端1,2, 刘立国1,2, 何加浩3, 李文斌3(), 熊日华1,2   

  1. 1.北京低碳清洁能源研究院, 北京 102211
    2.煤炭开采水资源保护与利用国家重点实验室, 北京 100011
    3.武汉纺织大学 湖北省纺织新材料与先进加工技术省部共建国家重点实验室培育基地, 湖北 武汉 430200
  • 收稿日期:2019-04-23 修回日期:2020-04-02 出版日期:2020-08-15 发布日期:2020-08-21
  • 通讯作者: 李文斌
  • 作者简介:刘捷(1987—),男,高级工程师,博士。主要研究方向为工业废水处理。
  • 基金资助:
    国家能源集团科技创新计划资助项目(GJNY-18-71)

Application of textile in evaporation treatment of saline wastewater

LIU Jie1,2, TONG Shenglu1,2, LI Xiaoduan1,2, LIU Liguo1,2, HE Jiahao3, LI Wenbin3(), XIONG Rihua1,2   

  1. 1. National Institute of Clean-and-Low-Carbon Energy, Beijing 102211, China
    2. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 100011, China
    3. State Key Laboratory of Textile New Materials and Advanced Processing Technology in Hubei Province, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2019-04-23 Revised:2020-04-02 Online:2020-08-15 Published:2020-08-21
  • Contact: LI Wenbin

摘要:

针对含盐废水蒸发处理工艺复杂、效率低、成本高等问题,利用纺织品具有孔隙率高、透气性好、传湿快和光热转换性能可控等特性,将其作为含盐废水的流动以及蒸发载体进行实验,研究其厚度、透气性、颜色和纳米碳化锆后整理对含盐废水蒸发速率的影响。结果表明:含盐废水在织物表面的蒸发速率比在自然状态下蒸发提高了400%;厚度为0.48 mm的织物相比于1.32 mm的织物,含盐废水蒸发速率提高了63%;透气率为126.7 L/(s·m2)的织物相比于53.9 L/(s·m2)的织物,含盐废水蒸发速率提升了56.9%;黑色织物对含盐废水蒸发速率的促进作用相比于白色织物提高了30.3%;采用纳米碳化锆整理后白色织物表面含盐废水的蒸发速率相比未处理织物提升了95.3%。

关键词: 含盐废水, 蒸发速率, 织物厚度, 织物透气性, 纳米碳化锆

Abstract:

Aiming at the problems such as complexity, low-efficiency, and high-cost in evaporation treatment of saline wastewater, textiles were used as the flow and evaporation carrier for saline wastewater, which are featured by high porosity, air permeability, fast moisture transfer and controllable photothermal conversion performance. Experiments were conducted to study the effects of the thickness, air permeability, color and nano-zirconium carbide finishing on the evaporation rate of saline wastewater. The results show that the evaporation rate of the saline wastewater on the fabric surface is increased by 400% compared to the natural state. The evaporation rate of the saline wastewater with a thickness of 0.48 mm fabric is increased by 63% compared to that of a 1.32 mm fabric. The evaporation rate of the fabric with air permeability 126.7 L/(s·m2) is 56.9% higher than that of a 53.9 L/(s·m2) fabric. Black fabrics have a 30.3% increase in promoting the saline wastewater evaporation compared to white fabrics. The evaporation rate of saline wastwater on surface of the white fabrics treated with nano-zirconium carbide is increased by 95.3% compared to the original fabric.

Key words: saline wastewater, evaporation rate, fabric thickness, fabric permeability, nano-zirconium carbide

中图分类号: 

  • TS199

表1

煤化工含盐废水成分"

成分 质量浓度/
(mg·L-1)
成分 质量浓度/
(mg·L-1)
193 硫酸盐 9.73×104
1.30×104 氟化物 29.2
778 重碳酸盐 283
1.27×103 硝酸盐 310
0.199 亚硝酸盐 9.78
19.9 亚硫酸盐 <1
0.785 氯化物 2.90×103
铵盐/氨氮
(NH4+)
2.67×104 总硬度
(以CaCO3计)
881

表2

涤纶织物的规格参数"

试样
编号
组织
结构
断裂强力/N 透气率/
(L·s-1·m-2)
厚度/
mm
经向 纬向
1# 平纹 3 598 2 954 66.0 1.00
2# 平纹 2 072 1 633 135.9 0.65
3# 缎纹 1 475 1 184 122.7 0.74
4# 平纹 1 936 730 17.7 0.58
5# 平纹 2 026 1 485 97.0 0.78
6# 平纹 2 594 1 485 65.4 0.78
7# 斜纹 3 498 2 844 63.9 1.25
8# 平纹 1 720 1 454 71.0 0.48
9# 平纹 2 326 1 985 72.0 0.68
10# 平纹 2 575 2 184 65.0 0.71
11# 平纹 3 448 2 844 52.0 1.32
12# 平纹 2 998 2 344 53.9 1.05
13# 平纹 3 094 2 485 55.4 1.03
14# 平纹 2 076 1 435 107.0 0.97
15# 平纹 1 525 1 314 126.7 0.95

图1

含盐废水蒸发实验装置示意图"

表3

不同颜色染料质量配比"

颜色 染料及配比 颜色 染料及配比
青色 m(分散黄)∶m(分散蓝)=1∶1 黑色 分散黑
黄色 分散黄 橙色 m(分散黄):m(分散蓝)=1∶1
蓝色 分散蓝 红色 m(分散黄):m(分散蓝)=9∶1
绿色 m(分散黄)∶m(分散蓝)=7∶3 白色 原坯布

图2

不同织物样品的含盐废水蒸发速率"

表4

织物厚度与含盐废水蒸发速率的关系"

织物
编号
织物厚度/
mm
蒸发速率/
(kg·m-2·h-1)
误差
1# 1.00 0.66 ±0.07
8# 0.48 0.81 ±0.05
9# 0.68 0.79 ±0.05
10# 0.71 0.74 ±0.08
11# 1.32 0.49 ±0.04

图3

织物厚度对含盐废水蒸发的影响机制"

表5

织物透气性与含盐废水蒸发速率的关系"

织物编号 织物透气率/
(L·s-1·m-2)
蒸发速率/
(kg·m-2·h-1)
误差
1# 66.0 0.66 ±0.07
12# 53.9 0.51 ±0.06
13# 55.4 0.55 ±0.05
14# 107.0 0.74 ±0.04
15# 126.7 0.80 ±0.05

图4

含盐废水在不同颜色织物表面的蒸发速率"

表6

织物颜色对其光热转换效果的影响"

织物颜色 初始温度 最终温度 温差
黑色 26.9 48.2 21.3
青色 26.6 38.2 11.6
红色 27.2 37.4 10.2
蓝色 27.3 37.4 10.1
绿色 26.4 34.5 8.1
橙色 26.9 34.9 8.0
黄色 27.2 33.6 6.4
白色 27.2 33.6 6.4

图5

不同质量分数含盐废水的蒸发速率"

图6

纳米碳化锆整理前后织物的含盐废水蒸发速率"

表7

纳米碳化锆整理前后织物表面温度变化"

织物名称 初始温度 最终温度 温差
整理前白色织物 27.2 33.6 6.4
整理前黑色织物 26.9 48.2 21.3
整理后白色织物 26.8 58.4 31.6
整理后黑色织物 27.1 71.7 44.6

图7

纳米碳化锆整理前后织物透气性变化"

[1] 赵欣梅, 王万福, 张晓飞, 等. 炼化浓盐水处理与资源化工艺探讨[J]. 油气田环境保护, 2011,21(1):11-14.
ZHAO Xinmei, WANG Wanfu, ZHANG Xiaofei, et al. An exploration on refining brine treatment and resource procedures[J]. Environmental Protection of Oil & Gas Fields, 2011,21(1):11-14.
[2] 金云巧. 煤化工浓盐水及结晶盐处理技术探讨[J]. 煤化工, 2016,44(4):18-21.
JIN Yunqiao. Study on technical approach of hypersaline wastewater and crystallized salt in coal chemical indu-stry[J]. Coal Chemical Industry, 2016,44(4):18-21.
[3] 施小平, 李瑶, 潘家豪, 等. 用水热还原法制备可见光响应TiO2光催化剂[J]. 纺织学报, 2019,40(10):105-112.
SHI Xiaoping, LI Yao, PAN Jiahao, et al. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction[J]. Journal of Textile Research, 2019,40(10):105-112.
[4] 王海, 张峰榛, 王成端, 等. MVR技术处理高盐废水工艺的模拟与分析[J]. 环境工程, 2015,33(10):35-37.
WANG Hai, ZHANG Fengzhen, WANG Chengduan, et al. Simulation and analysis of MVR technology in the treatment of hypersaline wastewater[J]. Environmental Engineering, 2015,33(10):35-37.
[5] 赵鹏, 张新妙, 栾金义. 石化高盐废水深度处理技术研究进展[J]. 石油化工, 2018,47(7):769-774.
ZHAO Peng, ZHANG Xinmiao, LUAN Jinyi. Research progress on deep treatment technology of petrochemical high-salt wastewater[J]. Petrochemical Industry, 2018,47(7):769-774.
[6] 梁斌, 慧娟. 煤化工浓盐水处理设施蒸发塘的工艺设计[J]. 化工设计, 2016,26(2):11-14.
LIANG Bin, HUI Juan. Process design of evaporation pond of concentrated brine treatment facility in coal chemical industry[J]. Chemical Engineering Design, 2016,26(2):11-14.
[7] 张令品, 谢春刚, 齐春华, 等. 多效板式蒸馏淡化装置设计与研究[J]. 工程热物理学报, 2018,39(2):249-255.
ZHANG Lingpin, XIE Chungang, QI Chunhua, et al. Design and research of multi-effect plate distillation desalination plant[J]. Journal of Engineering Thermophysics, 2018,39(2):249-255.
[8] 王彦飞, 杨静, 王婧莹, 等. 煤化工高浓盐废水蒸发处理工艺进展[J]. 无机盐工业, 2017,49(1):10-14.
WANG Yanfei, YANG Jing, WANG Jingying, et al. Progress of evaporation process for high concentration salt wastewater from coal chemical industry[J]. Inorganic Salt Industry, 2017,49(1):10-14.
[9] ZHANG Qian. Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability[J]. Journal of Materials Chemistry A, 2018,6(35):17212-17219.
[10] AHMET Hamdi. Potential for natural evaporation as a reliable renewable energy resource[J]. Nature Communications, 2017,8(1):617-623.
pmid: 28951541
[11] TIAN Limei, LUAN Jingyi, LIU Kengku, et al. Plasmonic biofilm: a versatile optically active mate-rial[J]. Nano Letters, 2016,16(1):609-616.
pmid: 26630376
[12] ZHOU Lin, TAN Yingling, WANG Jingyang, et al. 3D self-assembly of aluminium nanoparticles for plasmon- enhanced solar desalination[J]. Nature Photonics, 2016,10(6):393-398.
[13] LI Tiantian. Ultra-robust carbon fibers for multi-media purification via solar-evaporation[J]. Journal of Materials Chemistry A, 2019,7:586-593.
[14] 魏天骐, 李秀强, 李金磊, 等. 界面光蒸汽转化研究进展[J]. 科学通报, 2018,63(14):1405-1416.
WEI Tianqi, LI Xiuqiang, LI Jinlei, et al. Interfacial solar vapor generation[J]. Chinese Science Bulletin, 2018,63(14):1405-1416.
[15] YANG Junlong, PANG Yunsong, HUANG Weixin, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano, 2017,11(6):5510-5518.
pmid: 28511003
[16] 高尚鹏, 黄庆林, 戴维, 等. 聚偏氟乙烯光致热纳米纤维膜的制备及其性能[J]. 纺织学报, 2019,40(8):1-6.
GAO Shangpeng, HUANG Qinglin, DAI Wei, et al. Preparation and properties of polyvinylidene fluoride photothermal nanofiber membrane[J]. Journal of Textile Research, 2019,40(8):1-6.
[17] 刘宏瑞, 赵彦伟, 白柳杨, 等. 高频热等离子体法合成纳米ZrC粉体及其表征[J]. 宇航材料工艺, 2019,49(4):76-79.
LIU Hongrui, ZHAO Yanwei, BAI Liuyang, et al. Synjournal and characterization of ultra-fine ZrC powder via RF thermal plasma method[J]. Aerospace Materials & Technology, 2019,49(4):76-79.
[18] 周刚, 方俊飞, 冯荣. 二氧化钛/碳纳米管纳米流体的光热转换性能[J]. 材料科学与工程学报, 2019,37(5):790-793.
ZHOU Gang, FANG Junfei, FENG Rong. Photothermal conversion properties of titania/carbon nanotubes nanofluids[J]. Journal of Materials Science & Engineering, 2019,37(5):790-793.
[19] YASHNA Poorun, MUHAMMAD Zaid. Stochastic modelling of the heat and moisture transfer in a porous medium[J]. Applied Mathematical Modelling, 2020,80(1):1-10.
[20] ATTARI Moghaddam, MARC Prat, TSOTSAS Evangelos, et al. Evaporation in capillary porous media at the perfect piston-like invasion limit: evidence of nonlocal equilibrium effects[J]. Water Resources Research, 2017,53(12):10433-10449.
[21] KINOSHITA Shuichi, YOSHIOKA Shinya. Structural colors in nature: the role of regularity and irregularity in the structure[J]. Chem Phys Chem, 2005,6(8):1442-1459.
pmid: 16015669
[22] 马双忱, 高然, 丁峰, 等. 脱硫废水自然蒸发影响因素及规律探究[J]. 热力发电, 2018,47(6):41-49.
MA Shuangchen, GAO Ran, DING Feng, et al. Study on influencing factors and laws of natural evaporation of desulfurization wastewater[J]. Thermal Power Generation, 2008,47(6):41-49.
[23] LI Changlei, LI Linfeng, LI Jingchuan, et al. Fabrication and characterisation of viscose fibre with photoinduced heat-generating properties[J]. Cellulose, 2019,26(3):1631-1640.
[24] 陈旭, 吴炳洋, 范滢, 等. 蓄热调温织物低温防护过程的数值模拟[J]. 纺织学报, 2019,40(7):163-168.
CHEN Xu, WU Bingyang, FAN Ying, et al. Numerical simulation of low temperature protection process for heat storage fabrics[J]. Journal of Textile Research, 2019,40(7):163-168.
[1] 宋英琦, 潘家豪, 吴礼光, 王挺, 董春颖. 可见光激发降解甲基橙的光催化漂浮球的制备[J]. 纺织学报, 2020, 41(12): 102-110.
[2] 陈美玉, 孙润军, 张长琦, 刘先锋. 经编间隔织物的缓压性能[J]. 纺织学报, 2019, 40(07): 58-63.
[3] 万喜莉 孙颖 陈利 李嘉禄. 2.5D角联锁织物厚向压缩特性的实验研究[J]. 纺织学报, 2015, 36(02): 49-54.
[4] 凌群民;谭磊. 织物干燥机理及干燥速率的探讨[J]. 纺织学报, 2006, 27(8): 22-24.
[5] 谭磊. 针织物的尺寸特性[J]. 纺织学报, 2004, 25(06): 120-121.
[6] 金子敏;阎玉秀. 织物性能与袖子吃势的相关性研究[J]. 纺织学报, 1999, 20(05): 16-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!