纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 191-200.doi: 10.13475/j.fzxb.20200405610

所属专题: 医用纺织品

• • 上一篇    

医用纺织品的研究进展

严佳1,2, 李刚1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-04-20 修回日期:2020-06-15 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 李刚
  • 作者简介:严佳(1997—),女,硕士生。主要研究方向为生物医用纺织材料。
  • 基金资助:
    中国纺织工业联合会科技指导性项目(2018054);江苏省第十五批“六大人才高峰”高层次人才项目(GDZB-035);中国化学纤维工业协会-绿宇基金项目(2018914);纺织面料技术教育部重点实验室开放课题项目(W201903)

Research progress on medical textiles

YAN Jia1,2, LI Gang1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. China National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-04-20 Revised:2020-06-15 Online:2020-09-15 Published:2020-09-25
  • Contact: LI Gang

摘要:

为开发生物相容性好、安全有效性能稳定的医用纺织品,对医用纺织品及其原材料的种类、构成形式、物理性能、生物性能和优缺点进行了阐述,介绍了医用纺织品的常见制备加工技术、表面处理和化学改性技术的研究进展,分析了医用纺织品的未来发展需求和趋势,以及面临的主要问题和机遇。最后指出:天然和人工合成的生物材料正在被广泛用于医用纺织品中,这些材料因其易于加工、可降解性、良好的力学性能以及生物相容性,使得医用纺织品能够用于体内植入、软组织修复、医疗保健和卫生等相关领域;医用纺织品涉及多学科交叉领域,需要生物材料、纺织和医学临床的多学科人才团队协同创新。

关键词: 医用纺织品, 卫生保健用纺织品, 人工器官, 植入型医用纺织品

Abstract:

In order to develop medical textiles with good biocompatibility, safety, effectiveness and stability, this paper reviews comprehensively on the types, composition forms, physical and biological properties, advantages and disadvantages of medical textiles and their raw materials. The research progress in commonly used preparation and processing technologies, surface treatment methods and chemical modification technologies for medical textiles were introduced. Future development demands and trends of medical textiles together with the main problems and opportunities were analyzed. It is concluded that natural and synthetic biomaterials are being widely used in medical textiles, which are easy to process and degradable. They have good mechanical properties and biocompatibility, making medical textiles suitable for in vivo implantation and soft tissue repair, healthcare and hygiene and other related fields. Medical textiles involve multi-disciplinary knowledge, and require multi-disciplinary teams of talents in biomaterials, textiles, and clinical medicine to work together for innovation.

Key words: medical material, healthcare and hygiene textiles, artificial organs, implantable textiles

中图分类号: 

  • TS106

图1

蚕丝与蜘蛛丝纤维的横截面"

表1

丝蛋白基生物材料在医用纺织品的应用研究"

类别 应用领域 制备方式 材料 参考文献
体外治疗用制品 矫形绷带/功能纺织品 针织/机织 丝织物 [24]
移植用制品 手术缝合线 单丝/复丝编织 丝线或钛夹 [25]
肌腱/韧带/神经 针织和/或编织 RGD改性多根纤维蚕丝 [26-27]
疝气补片/皮肤/肌肉 机织/经编和/或纬编 蚕丝蛋白网络 [28-29]
角膜/心脏瓣膜 非织造 聚L-丙交酯-己内酯/胶原蛋白/丝蛋白 [30]
人工关节/骨头 非织造/静电纺 骨蛋白和羟基磷灰石粒子改性丝蛋白纱线 [31]
牙线/绷带 编织 改性蚕丝 [32]
血管支架 非织/编织/机织 三维丝蛋白支架 [33]
人造血管 机织/针织/编织/静电纺 包有丝胶的涤纶/蚕丝 [34]
气管/食道/肠支架 经/纬编/编织/非织造涂层 载药丝蛋白涂层 [35]
人工器官用制品 人工肾脏、肺 蚕丝薄膜 丝-赖氨酸嵌段共聚物和DNA质粒 [36]
人工肝 非织造/纤维混合 丝蛋白/胶原蛋白共混膜 [37]
卫生保健用
纺织品
医院/外科用纺织品
手术服/口罩
非织造/纬编/经编/机织/
编织/后整理
丝蛋白后整理剂;
涂有抗菌整理剂的基质
[38-39]

图2

使用天然或合成的聚合物制造的植入型医用纺织品"

表2

医用防护口罩的类型、防护指标、结构及防护性能"

口罩种类 技术指标 结构 细菌过滤效率
(3.0 μm级)
非油性颗粒物
过滤效率
(0.3 μm级)
合成血液
穿透阻力/
kPa
表面抗湿性 密封性
棉布口罩 无明确要求 复合纤维压制 无明确要求 无明确要求 无明确要求 无明确要求 一般
普通医用口罩 YY/T 0969—2013 SMS ≥95% 无明确要求 无明确要求 无明确要求 一般
医用外科口罩 YY 0469—2011 (内层)吸湿层(中层)
熔喷层(外层)阻水层
≥95% ≥30% 15.96 无明确要求 一般
医用防护口罩 GB 19083—2010 与医用外科口罩相似,
但中层更厚
无明确要求 ≥95%(1级)
≥99%(2级)
≥99.97%(3级)
10.64 沾湿等级3级 紧密
[1] MOHANTY A K, VIVEKANANDHAN S, PIN J, et al. Composites from renewable and sustainable resources: challenges and innovations[J]. Science, 2018,362(6414):536-542.
pmid: 30385569
[2] LI G, CHEN Y F, HU J, et al. A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer[J]. Biomaterials, 2013,33(37):6451-61.
[3] ZHANG X A, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science, 2019,363(6427):619-623.
pmid: 30733415
[4] LI G, LIU Y, LAN P, et al. A prospective bifurcated biomedical stent with seamless woven structure[J]. Journal of The Textile Institute, 2013,104(9):1017-1023.
[5] MANDAL B B, GRINBERG A, GIL E S, et al. High-strength silk protein scaffolds for bone repair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):7699-7704.
pmid: 22552231
[6] KASOJU N, BORA U. Silk fibroin in tissue engineer-ing[J]. Advanced Healthcare Materials, 2012,1(4):393-412.
pmid: 23184771
[7] 程浩南. 纺织材料在医用纺织品设计中的应用和发展[J]. 产业用纺织品, 2019,37(1):4-7.
CHEN Haonan. Application and development of textile materials in the design of medical textile products[J]. Technical Textiles, 2019,37(1):4-7.
[8] HARDY J G, SCHEIBEL T R. Composite materials based on silk proteins[J]. Progress in Polymer Science, 2010,35(9):1093-1115.
[9] SHAO Z Z, VOLLRATH F. Materials: surprising strength of silkworm silk[J]. Nature, 2002,418(6899):741.
pmid: 12181556
[10] GUO C, LI C, VU H V, et al. Thermoplastic moulding of regenerated silk[J]. Nature Materials, 2020,19(1):102-108.
pmid: 31844276
[11] ALLMELING C, RADTKE C, VOGT P M. Technical and biomedical uses of nature's strongest fiber: spider silk[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 475-490.
[12] WANG Y, WEN J, PENG B, et al. Understanding the mechanical properties and structure transition of Antheraea pernyi silk fiber induced by its contrac-tion[J]. Biomacromolecules, 2018,19(6):1999-2006.
doi: 10.1021/acs.biomac.7b01691 pmid: 29401377
[13] GLORIA A, RONCA D, RUSSO T, et al. Technical features and criteria in designing fiber-reinforced composite materials: from the aerospace and aeronautical field to biomedical applications[J]. Journal of Applied Biomaterials & Biomechanics, 2011,9(2):151-163.
pmid: 22065393
[14] 王明超, 李杰, 秦松, 等. 水产动物源胶原蛋白医学应用研究进展[J]. 海洋科学, 2018,42(12):109-117.
WANG Mingchao, LI Jie, QIN Song, et al. Research progress in medical application of aquatic animal-derived collagen[J]. Marine Science, 2018,42(12):109-117.
[15] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019,33(19):3322-3327.
HUANG Yanping, DAN Nianhua, DAN Weihua. Promising biomedical material based on collagen composite electrospun nanofibers: a review[J]. Materials Reports, 2019,33(19):3322-3327.
[16] LI G, LI Y, LAN P, et al. Polydioxanone weft-knitted intestinal stents: fabrication and mechanics optimiza-tion[J]. Textile Research Journal, 2013,83(20):2129-2141.
[17] 李娜, 钱晓明. 医用非织造材料的发展与应用[J]. 产业用纺织品, 2017(3):67-70.
LI Na, QIAN Xiaoming. Development and application of medical nonwovens[J]. Technical Textiles, 2017(3):67-70.
[18] DANIELE M A, BOYD D A, ADAMS A A, et al. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications[J]. Advanced Healthcare Materials, 2015,4(1):11-28.
doi: 10.1002/adhm.201400144 pmid: 24853649
[19] WANG X, DING B, SUN G, et al. Electro- spinning/netting: a strategy for the fabrication of three-dimensional polymer nano-fiber/nets[J]. Progress in Materials Science, 2013,58(8):1173-1243.
pmid: 32287484
[20] 张佩华, 王颖初, 王聪儿. 针织技术在生物医用纺织品领域的应用[J]. 纺织导报, 2014(7):42-45.
ZHANG Peihua, WANG Yingchu, WANG Conger. Application of knitting technologies in medical textiles[J]. China Textile Leader, 2014(7):42-45.
[21] 谢旭升, 李刚, 李翼, 等. 生物医用纺织肠道支架研究进展[J]. 产业用纺织品, 2016(10):1-10.
XIE Xusheng, LI Gang, LI Yi, et al. Advances in biomedical textile intestinal stents for treatment of colorectal cancer[J]. Technical Textiles, 2016(10):1-10.
[22] GIL E S, PANILAITIS B, BELLAS E, et al. Functionalized Silk Biomaterials for Wound Healing[J]. Advanced Healthcare Materials, 2013,2(1):206-217.
doi: 10.1002/adhm.201200192 pmid: 23184644
[23] XIA Y, GAO G, LI Y. Preparation and properties of nanometer titanium dioxide/silk fibroin blend memb-rane[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009,90B(2):653-658.
[24] LI G, LIU H, LI T, et al. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications[J]. Materials Science & Engineering C-Materials for Biological Applications, 2012,32(4):627-636.
[25] JANIGA P K, ELAYARAJAH B, RAJENDRAN R, et al. Drug-eluting silk sutures to retard post-operative surgical site infections[J]. Journal of Industrial Textiles, 2012,42(2):176-190.
[26] FAN H, LIU H, TOH S L, et al. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model[J]. Biomaterials, 2009,30(28):4967-4977.
doi: 10.1016/j.biomaterials.2009.05.048 pmid: 19539988
[27] HOHLRIEDER M, TEUSCHL A H, CICHA K, et al. Bioreactor and scaffold design for the mechanical stimulation of anterior cruciate ligament grafts[J]. Bio-Medical Materials and Engineering, 2013,23(3):225-237.
pmid: 23629535
[28] UNGER R E, WOLF M, PETERS K, et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering[J]. Biomaterials, 2004,25(6):1069-1075.
doi: 10.1016/s0142-9612(03)00619-7 pmid: 14615172
[29] HAN F, LIU S, LIU X, et al. Woven silk fabric-reinforced silk nanofibrous scaffolds for regenerating load-bearing soft tissues[J]. Acta Biomaterialia, 2014,10(2):921-930.
pmid: 24090985
[30] MYUNG D, KOH W, BAKRI A, et al. Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct[J]. Biomedical Microdevices, 2007,9(6):911-922.
doi: 10.1007/s10544-006-9040-4 pmid: 17237989
[31] LI C M, VEPARI C, JIN H J, et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J]. Biomaterials, 2006,27(16):3115-3124.
doi: 10.1016/j.biomaterials.2006.01.022 pmid: 16458961
[32] KIM S E, LEE E R, LEE Y, et al. A modified method for inducing periodontitis in dogs using a silk-wire twisted ligature[J]. Journal of Veterinary Science, 2012,13(2):193-197.
doi: 10.4142/jvs.2012.13.2.193 pmid: 22705742
[33] FUCHS S, MOTTA A, MIGLIARESI C, et al. Outgrowth endothelial cells isolated and expanded from human peripheral blood progenitor cells cells for endothelialization as a potential source of autologous of silk fibroin biomaterials[J]. Biomaterials, 2006,27(31):5399-5408.
pmid: 16837042
[34] UNGER R E, PETERS K, WOLF M, et al. Endo thelialization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of hunian endothelial cells[J]. Biomaterials, 2004,25(21):5137-5146.
pmid: 15109837
[35] KUKREJA N, ONUMA Y, DAEMEN J, et al. The future of drug-eluting stents[J]. Pharmacological Research, 2008,57(3):171-180.
doi: 10.1016/j.phrs.2008.01.012 pmid: 18339557
[36] NUMATA K, SUBRAMANIAN B, CURRIE H A, et al. Bioengineered silk protein-based gene delivery systems[J]. Biomaterials, 2009,30(29):5775-5784.
doi: 10.1016/j.biomaterials.2009.06.028 pmid: 19577803
[37] CIRILLO B, MORRA M, CATAPANO G. Adhesion and function of rat liver cells adherent to silk fibroin/collagen blend films[J]. International Journal of Artificial Organs, 2004,27(1):60-68.
doi: 10.1177/039139880402700112
[38] SHA L, ZHAO H, XIAO G. Photocatalytic degradation of formaldehyde by silk mask paper loading nanometer titanium dioxide[J]. Fibers and Polymers, 2013,14(6):976-981.
doi: 10.1007/s12221-013-0976-8
[39] SHA L, ZHAO H. Preparation and properties of nano-TiO2 photo-catalytic silk respirator paper[J]. Fibers and Polymers, 2012,13(9):1159-1164.
[40] UM I C, KI C S, KWEON H Y, et al. Wet spinning of silk polymer: II: effect of drawing on the structural characteristics and properties of filament[J]. International Journal of Biological Macromolecules, 2004,34(1-2):107-119.
doi: 10.1016/j.ijbiomac.2004.03.011 pmid: 15178015
[41] ZHANG X, REAGAN M R, KAPLAN D L. Electrospun silk biomaterial scaffolds for regenerative medicine[J]. Advanced Drug Delivery Reviews, 2009,61(12):988-1006.
pmid: 19643154
[42] MIN B M, LEE G, KIM S H, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials, 2004,25(7/8):1289-1297.
[43] RADTKE C, ALLMELING C, WALDMANN K, et al. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep[J]. PloS One, 2011, 6(2):(e169902).
doi: 10.1371/journal.pone.0245859 pmid: 33481945
[44] HUANG W, BEGUM R, BARBER T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats[J]. Biomaterials, 2012,33(1):59-71.
doi: 10.1016/j.biomaterials.2011.09.030 pmid: 22005069
[45] MADDURI S, PAPALOIZOS M, GANDER B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration[J]. Biomaterials, 2010,31(8):2323-2334.
doi: 10.1016/j.biomaterials.2009.11.073 pmid: 20004018
[46] KUNDU B, RAJKHOWA R, KUNDU S C, et al. Silk fibroin biomaterials for tissue regenerations[J]. Advanced Drug Delivery Reviews, 2013,65(4):457-470.
doi: 10.1016/j.addr.2012.09.043 pmid: 23137786
[47] PANAS-PEREZ E, GATT C J, DUNN M G. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction[J]. Journal of Materials Science-Materials in Medicine, 2013,24(1):257-265.
doi: 10.1007/s10856-012-4781-5 pmid: 23053810
[48] GAGNER J E, KIM W, CHAIKOF E L. Designing protein-based biomaterials for medical applications[J]. Acta Biomaterialia, 2014,10(4):1542-1557.
doi: 10.1016/j.actbio.2013.10.001 pmid: 24121196
[49] LI J, BAKER B A, MOU X, et al. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering[J]. Advanced Healthcare Materials, 2014,3(4):469-484.
pmid: 24339420
[50] ZANG M, ZHANG Q, DAVIS G, et al. Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation[J]. Acta Biomaterialia, 2011,7(9):3422-3431.
pmid: 21640205
[51] LIU Z, ZHENG Z, CHEN K, et al. A heparin-functionalized woven stent graft for endovascular exclusion[J]. Colloids and Surfaces B: Biointerfaces, 2019,180:118-126.
doi: 10.1016/j.colsurfb.2019.04.027 pmid: 31035055
[52] 刘泽堃, 李刚, 李毓陵, 等. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017,38(7):155-163.
LIU Zekun, LI Gang, LI Yuling, et al. Research progress of biomedical textile artificial blood vessel[J]. Journal of Textile Research, 2017,38(7):155-163.
[53] YANG X, WANG L, GUAN G, et al. Preparation and evaluation of bicomponent and homogeneous polyester silk small diameter arterial prostheses[J]. Journal of Biomaterials Applications, 2014,28(5):676-687.
doi: 10.1177/0885328212472216 pmid: 23292721
[54] LI G, LI Y, LAN P, et al. Biodegradable weft- knitted intestinal stents: fabrication and physical changes investigation in vitro degradation[J]. Journal of Biomedical Materials Research Part A, 2014,102(4):982-990.
doi: 10.1002/jbm.a.34759 pmid: 23625859
[55] NI Y, ZHAO X, ZHOU L, et al. Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair[J]. Otolaryngology-Head and Neck Surgery, 2008,139(2):256-261.
doi: 10.1016/j.otohns.2008.03.028 pmid: 18656725
[56] HE P, SAHOO S, NG K S, et al. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold[J]. Journal of Biomedical Materials Research Part A, 2013,101(2):555-566.
doi: 10.1002/jbm.a.34333 pmid: 22949167
[57] GOGOI D, CHOUDHURY A J, CHUTIA J, et al. Enhancement of hydrophobicity and tensile strength of muga silk fiber by radiofrequency Ar plasma dis-charge[J]. Applied Surface Science, 2011,258(1):126-135.
[58] 张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019,40(10):7-12.
ZHANG Zhibin, LI Gang, MAO Senxian, et al. Preparation and antibacterial activity of silk fibroin/chitosan microspheres[J]. Journal of Textile Research, 2019,40(10):7-12.
[59] BU Y, MA J, BEI J, et al. Surface modification of aliphatic polyester to enhance biocompatibility[J]. Frontiers in Bioengineering and Biotechnology, 2019,7:1-10.
doi: 10.3389/fbioe.2019.00001 pmid: 30705882
[60] 王景昌, 田羽竹, 王卫京, 等. 功能化生物医用材料的研究进展[J]. 塑料科技, 2019,47(10):148-153.
WANG Jingchang, TIAN Yuzhu, WANG Weijing, et al. Research progress of functional biomedical materials[J]. Plastic Science and Technology, 2019,47(10):148-153.
[61] RAJKHOWA R, LEVIN B, REDMOND S L, et al. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions[J]. Journal of Biomedical Materials Research Part A, 2011,97A(1):37-45.
[62] PRITCHARD E M, KAPLAN D L. Silk fibroin biomaterials for controlled release drug delivery[J]. Expert Opinion on Drug Delivery, 2011,8(6):797-811.
doi: 10.1517/17425247.2011.568936 pmid: 21453189
[63] XIE X, YU J, ZHAO Z, et al. Fabrication and drug release properties of curcumin-loaded silk fibroin nanofibrous membranes[J]. Adsorption Science & Technology, 2019,37(5-6):412-424.
[64] XIE M, LI Y, ZHAO Z, et al. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2[J]. Materials Letters, 2016,167:175-178.
[65] WU J, WANG J, ZHANG J, et al. Oral delivery of curcumin using silk nano and microparticles[J]. ACS Biomaterials Science & Engineering, 2018,4(11):3885-3894.
doi: 10.1021/acsbiomaterials.8b00454 pmid: 33429597
[66] HORAN R L, ANTLE K, COLLETTE A L, et al. In vitro degradation of silk fibroin[J]. Biomaterials, 2005,26(17):3385-3393.
doi: 10.1016/j.biomaterials.2004.09.020 pmid: 15621227
[67] SU D H, YAO M, LIU J, et al. Enhancing mechanical properties of silk fibroin hydrogel through restricting the growth of β-sheet domains[J]. ACS Applied Materials & Interfaces, 2017,9(20):17489-17498
doi: 10.1021/acsami.7b04623 pmid: 28470062
[68] 中国国家卫生健康委. 2019年我国卫生健康事业发展统计公报出炉[R]. 中国国家卫生健康委, 2019.
National Health Commission of the People's Republic of China. 2019 Statistical bulletin on the development of my country's health care[R]. National Health Commission of the People's Republic of China, 2019.
[69] 胡盛寿, 杨跃进, 郑哲, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019,34(4):209-220.
HU Shengshou, YANG Yuejin, ZHENG Zhe, et al. Summary of the 2018 report on cardiovascular diseases in China[J]. Chinese Circulation Journal, 2019,34(4):209-220.
[70] 苏沐晖. 口罩行业热度不减专业市场空间大[J]. 新产经, 2020(4):56-59.
SU Muhui. The popularity of the mask industry is not reduced, the professional market space is large[J]. New Industrial Economy, 2020(4):56-59.
[1] 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73.
[2] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72.
[6] 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72.
[7] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[8] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[9] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168-174.
[10] 刘泽堃 李刚 李毓陵 李翼 王晓沁. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017, 38(07): 155-163.
[11] 秦益民. 新型医用敷料:几种典型的高科技医用敷料(Ⅱ)[J]. 纺织学报, 2003, 24(06): 85-86.
[12] 秦益民. 新型医用敷料:伤口种类及其对敷料的要求(Ⅰ)[J]. 纺织学报, 2003, 24(05): 113-115.
[13] 杨明煜. 医用纺织纤维的性能与应用[J]. 纺织学报, 2002, 23(04): 82-83.
[14] 王文祖;张佩华;刘伟强. 医用真丝编织缝合线的编织工艺研究[J]. 纺织学报, 2001, 22(02): 34-36.
[15] 李明忠;卢神州;吴徵宇;严灏景. 多孔丝素膜的制备及其形态结构[J]. 纺织学报, 2000, 21(05): 4-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!