纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 8-15.doi: 10.13475/j.fzxb.20191203408
唐峰1, 余厚咏2(), 周颖2, 李营战2, 姚菊明1, 王闯1, 金万慧3
TANG Feng1, YU Houyong2(), ZHOU Ying2, LI Yingzhan2, YAO Juming1, WANG Chuang1, JIN Wanhui3
摘要:
为提高聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)(PHBV)膜的抗菌性能,拓展其在食品包装领域的应用,首先利用纤维素纳米纤丝(CNF)表面的不同极性基团,采用原位还原法制备了不同形貌的CNF-Ag杂化材料;然后将其与PHBV复合制得高阻隔性抗菌复合膜材料,并对复合膜材料的微观形貌、结晶性能、热稳定性、化学结构和抗菌性能进行表征与分析。结果表明:引入柠檬酸与抗坏血酸后,CNF-Ag杂化材料表面羧基含量最高可达1.21 mmol/g;CNF-Ag杂化材料和PHBV基体形成了较强的氢键作用,改善了PHBV的结晶性能和抗菌性能,使复合膜的拉伸强度高达66.7 MPa,弹性模量达7.6 GPa,且对金黄色葡萄球菌抗菌率达到99%。
中图分类号:
[1] |
ZHONG Yajie, GODWIN Patrick, JIN Yongcan, et al. Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review[J]. Advanced Industrial and Engineering Polymer Research, 2020,3(1):27-35.
doi: 10.1016/j.aiepr.2019.11.002 |
[2] | SIRACUSA Valentina, ROCCULI Pietro, ROMANI Santina, et al. Biodegradable polymers for food packaging: a review[J]. Trends in Food Science & Technology, 2008,19(12):634-643. |
[3] | MAO Zhiqiang, LI Sining, LENG Yuanpeng, et al. Controlled morphology and size of ZnO nanocrystals using the continuous hot compressed water technique[J]. The Journal of Supercritical Fluids, 2013,79:268-273. |
[4] | RAHAYU A, ZALEHA Z, YAHYA A R M, et al. Production of copolymer poly (3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process[J]. World Journal of Microbiology and Biotechnology, 2008,24(11):2403-2409. |
[5] |
LI Zhengjun, SHI Zhenyu, JIAN Jia, et al. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli[J]. Metabolic Engineering, 2010,12(4):352-359.
doi: 10.1016/j.ymben.2010.03.003 pmid: 20304089 |
[6] | 张瑜. 竹纤维/PHBV复合材料的力学性能研究[J]. 纺织学报, 2004,25(6):38-40. |
ZHANG Yu. Research on mechanical properties of bamboo fiber / PHBV composites[J]. Journal of Textile Research, 2004,25(6):38-40. | |
[7] |
LI Fang, YU Houyong, WANG Yanyan, et al. Natural biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10954-10967.
pmid: 31365242 |
[8] |
LU Fangfang, YU Houyong, YAN Chenfeng, et al. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties[J]. RSC Advances, 2016,6(51):46008-46018.
doi: 10.1039/C6RA02768G |
[9] |
RIVERA-BRISO A L, SERRANO-AROCA Á. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications[J]. Polymers, 2018,10(7):732.
doi: 10.3390/polym10070732 |
[10] |
DIEZ-PASCUAL A M, DIEZ-VICENTE A L. ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging[J]. ACS Applied Materials & Interfaces, 2014,6(12):9822-9834.
pmid: 24846876 |
[11] |
WANG Li, GUO Yong, CHEN Yuxia, et al. Enhanced mechanical and water absorption properties of rice husk-derived nano-SiO2 reinforced PHBV composites[J]. Polymers, 2018,10(9):1022.
doi: 10.3390/polym10091022 |
[12] | 张效林, 李佳, 邓祥胜, 等. 废纸纤维/微晶纤维素增强PHBV复合材料性能研究[J]. 功能材料, 2018,49(8):8097-8101. |
ZHANG Xiaolin, LI Jia, DENG Xiangsheng, et al. Study on properties of waste paper fiber/microcrystalline cellulose reinforced PHBV composites[J]. Journal of Functional Materials, 2018,49(8):8097-8101. | |
[13] | TANG Feng, YU Houyong, ABDALKARIM Somia Yassin Hussain, et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials[J]. Chemical Engineering Journal, 2020,395:12500. |
[14] |
GORRASI Giuliana, PANTANI Roberto, MURARIU Marius, et al. PLA/H alloysite nanocomposite films: water vapor barrier properties and specific key characteristics[J]. Macromolecular Materials and Engineering, 2014,299:104-115.
doi: 10.1002/mame.201200424 |
[15] |
PANTANI Roberto, GORRASI Giuliana, VIGLITOTTA Giovanni, et al. PLA-ZnO composite films: water vapor barrier properties and specific end-use characteristics[J]. European Polymer Journal, 2013,49:3471-3482.
doi: 10.1016/j.eurpolymj.2013.08.005 |
[16] |
YU Houyong, YANG Xingyuan, LU Fangfang, et al. Fabrication of multifunctional cellulose nanocrystals/poly (lactic acid) composites with silver nanoparticles by spraying method[J]. Carbohydrate Polymers, 2016,140:209-219.
pmid: 26876846 |
[17] |
YU Houyong, QIN Zengyi, SUN Bin, et al. One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag composites[J]. Journal of Nanoparticle Research, 2014,16:1-12.
doi: 10.1007/s11051-014-2285-6 |
[18] |
LI Shuming, JIA Ning, ZHU Jiefang, et al. Rapid microwave-assisted preparation and characterization of cellulose-silver composites[J]. Carbohydrate Polymers, 2011,83:422-429.
doi: 10.1016/j.carbpol.2010.08.003 |
[19] |
HUANG Wei, WANG Yingjun, REN Li, et al. A novel PHBV/HA microsphere releasing system loaded with alendronate[J]. Materials Science and Engineering C, 2009,29:2221-2225.
doi: 10.1016/j.msec.2009.05.015 |
[20] | VIDHATE S, INNOCENTINI-MEI L, D'SOUZA N A. Mechanical and electrical multifunctional poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-multiwall carbon nanotube composites[J]. Polymer Engineering & Science, 2012,52:1367-1374. |
[21] |
GEORGE J, KUMAR R, SAJEEVKUMAR V A, et al. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles[J]. Carbohydrate Polymers, 2014,105:285-292.
doi: 10.1016/j.carbpol.2014.01.057 pmid: 24708982 |
[22] |
FUJISAWA Shuji, IKEUCHI Tomoyasu, TAKEUCHI Miyuki, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies[J]. Biomacromolecules, 2012,13:2188-2194.
doi: 10.1021/bm300609c pmid: 22642863 |
[1] | 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30. |
[2] | 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/ 氧化纤维素/ 南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40. |
[3] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108. |
[4] | 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180. |
[5] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[6] | 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20. |
[7] | 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7. |
[8] | 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120. |
[9] | 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98. |
[10] | 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116. |
[11] | 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196. |
[12] | 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117. |
[13] | 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31. |
[14] | 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25. |
[15] | 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12. |
|