纺织学报 ›› 2020, Vol. 41 ›› Issue (09): 8-15.doi: 10.13475/j.fzxb.20191203408

• 纤维材料 • 上一篇    下一篇

聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能

唐峰1, 余厚咏2(), 周颖2, 李营战2, 姚菊明1, 王闯1, 金万慧3   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.浙江理工大学纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    3.湖北省纤维检验局, 湖北 武汉 430000
  • 收稿日期:2019-12-06 修回日期:2020-06-02 出版日期:2020-09-15 发布日期:2020-09-25
  • 通讯作者: 余厚咏
  • 作者简介:唐峰(1995—),男,硕士。主要研究方向为生物基高分子材料的制备与应用。
  • 基金资助:
    浙江省重点自然科学基金项目(LZ20E030003);中国科协青年人才托举工程项目(2018QNRC001);浙江省科技厅公益项目(2017C37014);浙江理工大学科研启动基金项目(19012099-Y)

Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films

TANG Feng1, YU Houyong2(), ZHOU Ying2, LI Yingzhan2, YAO Juming1, WANG Chuang1, JIN Wanhui3   

  1. 1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Textiles Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Hubei Province Fibre Inspection Bureau, Wuhan, Hubei 430000, China
  • Received:2019-12-06 Revised:2020-06-02 Online:2020-09-15 Published:2020-09-25
  • Contact: YU Houyong

摘要:

为提高聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)(PHBV)膜的抗菌性能,拓展其在食品包装领域的应用,首先利用纤维素纳米纤丝(CNF)表面的不同极性基团,采用原位还原法制备了不同形貌的CNF-Ag杂化材料;然后将其与PHBV复合制得高阻隔性抗菌复合膜材料,并对复合膜材料的微观形貌、结晶性能、热稳定性、化学结构和抗菌性能进行表征与分析。结果表明:引入柠檬酸与抗坏血酸后,CNF-Ag杂化材料表面羧基含量最高可达1.21 mmol/g;CNF-Ag杂化材料和PHBV基体形成了较强的氢键作用,改善了PHBV的结晶性能和抗菌性能,使复合膜的拉伸强度高达66.7 MPa,弹性模量达7.6 GPa,且对金黄色葡萄球菌抗菌率达到99%。

关键词: 复合膜, 纤维素纳米纤丝, 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯), 纳米银, 抗菌性, 高阻隔性

Abstract:

Aiming to improve the antibacterial properties of poly (3-hydroxybutyrate-co-3-hydroxyvalerate copolyester) (PHBV) film, cellulose nanofibril (CNF) with different polar groups was used to produce CNF-Ag hybrid materials with different morphologies via the in situ reduction method, which was incorporated into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix to get antibacterial high-barrier composite films. The morphology, crystallinity, thermal stability, chemical structure and antibacterial properties of samples were investigated and analyzed. The results show that the surface carboxyl group content of CNF-Ag hybrid can reach up to 1.21 mmol/g by introducing citric acid and ascorbic acid. CNF-Ag not only induces PHBV to generate hydrogen bond network, but also improves the crystallization behavior, with the tensile strength of the composite film being 66.7 MPa, the modulus of elasticity 7.6 GPa, and the antibacterial activity against Staphylococcus aureus 99%.

Key words: composite film, cellulose nanofibril, poly (3-hydroxybutyrate-co-3-hydroxyvalerate), nano silver, antibacterial ability, high barrier property

中图分类号: 

  • TQ352.8

图1

实验流程图"

图2

不同PHBV复合膜截面扫描电镜照片"

图3

不同PHBV复合膜的紫外-可见光谱图"

图4

不同PHBV复合膜的红外光谱图"

图5

PHBV复合膜的X射线衍射图谱"

图6

PHBV复合膜的DSC曲线"

表1

PHBV复合膜的氢键系数及结晶度"

样品名称 羧基含量/
(mmol·g-1)
氢键系数 结晶度/%
PHBV/CNF-Ag 0.11 0.12±0.03 67.3±3.12
PHBV/CNF (4.5)-Ag 1.03 0.12±0.02 52.6±2.15
PHBV/CNF (7.5)-Ag 1.12 0.13±0.03 52.1±3.43
PHBV/CNFA-Ag 0.13 0.13±0.02 46.6±6.02
PHBV/CNFC-Ag 1.11 0.16±0.03 46.2±3.57
PHBV/CNFAC-Ag 1.21 0.18±0.03 35.4±1.89
PHBV/CNF(7.5)A-Ag 0.91 0.17±0.04 42.6±2.65

图7

PHBV复合膜的TGA和DTG曲线"

表2

PHBV复合膜的力学性能和透湿迁移性能"

样品名称 拉伸强度/MPa 弹性模量/GPa 断裂伸长率/% 迁移量/(μg·kg-1) 吸水率/% 水蒸气透过率/
(10-14 kg·m·m-2·s-1·Pa-1)
异辛烷 乙醇
PHBV 10.2±0.3 0.1±0.3 1.78±0.13 107.0±0.5 83.9±9.8 10.06±0.02 7.63±0.04
PHBV/CNF-Ag 22.2±0.8 2.3±0.2 1.85±0.15 25.5±0.2 38.9±0.2 0.18±0.05 1.57±0.02
PHBV/CNF (4.5)-Ag 42.8±0.5 5.6±0.5 1.74±0.25 18.9±0.3 31.5±0.6 2.01±0.08 5.62±0.05
PHBV/CNF (7.5)-Ag 53.3±0.7 6.8±0.3 1.57±0.38 16.2±0.5 27.4±0.7 2.25±0.01 5.96±0.08
PHBV/CNFA-Ag 55.3±0.05 7.1±0.2 1.49±0.02 34.5±0.2 68.6±0.8 3.18±0.05 7.15±0.07
PHBV/CNFC-Ag 57.6±0.2 7.3±0.3 1.31±0.57 44.2±0.1 86.9±0.4 3.23±0.03 6.83±0.04
PHBV/CNFAC-Ag 66.7±0.6 7.6±0.3 1.29±0.89 35.4±0.6 61.5±0.3 3.91±0.09 8.13±0.06
PHBV/CNF (7.5)A-Ag 36.1±0.8 4.8±0.4 1.48±0.65 38.5±0.7 67.2±0.1 3.57±0.03 5.89±0.04

图8

PHBV复合膜在金黄色葡萄球菌中的抑菌圈面积"

表3

PHBV复合膜对金黄色葡萄球菌的抗菌率测试结果"

样品名称 抗菌率/%
PHBV/CNF-Ag 100.0
PHBV/CNF (4.5)-Ag 100.0
PHBV/CNF (7.5)-Ag 99.9
PHBV/CNFA-Ag 99.9
PHBV/CNFC-Ag 99.5
PHBV/CNFAC-Ag 99.9
PHBV/CNF(7.5)A-Ag 99.9
[1] ZHONG Yajie, GODWIN Patrick, JIN Yongcan, et al. Biodegradable polymers and green-based antimicrobial packaging materials: a mini-review[J]. Advanced Industrial and Engineering Polymer Research, 2020,3(1):27-35.
doi: 10.1016/j.aiepr.2019.11.002
[2] SIRACUSA Valentina, ROCCULI Pietro, ROMANI Santina, et al. Biodegradable polymers for food packaging: a review[J]. Trends in Food Science & Technology, 2008,19(12):634-643.
[3] MAO Zhiqiang, LI Sining, LENG Yuanpeng, et al. Controlled morphology and size of ZnO nanocrystals using the continuous hot compressed water technique[J]. The Journal of Supercritical Fluids, 2013,79:268-273.
[4] RAHAYU A, ZALEHA Z, YAHYA A R M, et al. Production of copolymer poly (3-hydroxybutyrate-co-4-hydroxybutyrate) through a one-step cultivation process[J]. World Journal of Microbiology and Biotechnology, 2008,24(11):2403-2409.
[5] LI Zhengjun, SHI Zhenyu, JIAN Jia, et al. Production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) from unrelated carbon sources by metabolically engineered Escherichia coli[J]. Metabolic Engineering, 2010,12(4):352-359.
doi: 10.1016/j.ymben.2010.03.003 pmid: 20304089
[6] 张瑜. 竹纤维/PHBV复合材料的力学性能研究[J]. 纺织学报, 2004,25(6):38-40.
ZHANG Yu. Research on mechanical properties of bamboo fiber / PHBV composites[J]. Journal of Textile Research, 2004,25(6):38-40.
[7] LI Fang, YU Houyong, WANG Yanyan, et al. Natural biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites with multifunctional cellulose nanocrystals/graphene oxide hybrids for high-performance food packaging[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10954-10967.
pmid: 31365242
[8] LU Fangfang, YU Houyong, YAN Chenfeng, et al. Polylactic acid nanocomposite films with spherical nanocelluloses as efficient nucleation agents: effects on crystallization, mechanical and thermal properties[J]. RSC Advances, 2016,6(51):46008-46018.
doi: 10.1039/C6RA02768G
[9] RIVERA-BRISO A L, SERRANO-AROCA Á. Poly (3-hydroxybutyrate-co-3-hydroxyvalerate): enhancement strategies for advanced applications[J]. Polymers, 2018,10(7):732.
doi: 10.3390/polym10070732
[10] DIEZ-PASCUAL A M, DIEZ-VICENTE A L. ZnO-reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging[J]. ACS Applied Materials & Interfaces, 2014,6(12):9822-9834.
pmid: 24846876
[11] WANG Li, GUO Yong, CHEN Yuxia, et al. Enhanced mechanical and water absorption properties of rice husk-derived nano-SiO2 reinforced PHBV composites[J]. Polymers, 2018,10(9):1022.
doi: 10.3390/polym10091022
[12] 张效林, 李佳, 邓祥胜, 等. 废纸纤维/微晶纤维素增强PHBV复合材料性能研究[J]. 功能材料, 2018,49(8):8097-8101.
ZHANG Xiaolin, LI Jia, DENG Xiangsheng, et al. Study on properties of waste paper fiber/microcrystalline cellulose reinforced PHBV composites[J]. Journal of Functional Materials, 2018,49(8):8097-8101.
[13] TANG Feng, YU Houyong, ABDALKARIM Somia Yassin Hussain, et al. Green acid-free hydrolysis of wasted pomelo peel to produce carboxylated cellulose nanofibers with super absorption/flocculation ability for environmental remediation materials[J]. Chemical Engineering Journal, 2020,395:12500.
[14] GORRASI Giuliana, PANTANI Roberto, MURARIU Marius, et al. PLA/H alloysite nanocomposite films: water vapor barrier properties and specific key characteristics[J]. Macromolecular Materials and Engineering, 2014,299:104-115.
doi: 10.1002/mame.201200424
[15] PANTANI Roberto, GORRASI Giuliana, VIGLITOTTA Giovanni, et al. PLA-ZnO composite films: water vapor barrier properties and specific end-use characteristics[J]. European Polymer Journal, 2013,49:3471-3482.
doi: 10.1016/j.eurpolymj.2013.08.005
[16] YU Houyong, YANG Xingyuan, LU Fangfang, et al. Fabrication of multifunctional cellulose nanocrystals/poly (lactic acid) composites with silver nanoparticles by spraying method[J]. Carbohydrate Polymers, 2016,140:209-219.
pmid: 26876846
[17] YU Houyong, QIN Zengyi, SUN Bin, et al. One-pot green fabrication and antibacterial activity of thermally stable corn-like CNC/Ag composites[J]. Journal of Nanoparticle Research, 2014,16:1-12.
doi: 10.1007/s11051-014-2285-6
[18] LI Shuming, JIA Ning, ZHU Jiefang, et al. Rapid microwave-assisted preparation and characterization of cellulose-silver composites[J]. Carbohydrate Polymers, 2011,83:422-429.
doi: 10.1016/j.carbpol.2010.08.003
[19] HUANG Wei, WANG Yingjun, REN Li, et al. A novel PHBV/HA microsphere releasing system loaded with alendronate[J]. Materials Science and Engineering C, 2009,29:2221-2225.
doi: 10.1016/j.msec.2009.05.015
[20] VIDHATE S, INNOCENTINI-MEI L, D'SOUZA N A. Mechanical and electrical multifunctional poly (3-hydroxybutyrate-co-3-hydroxyvalerate)-multiwall carbon nanotube composites[J]. Polymer Engineering & Science, 2012,52:1367-1374.
[21] GEORGE J, KUMAR R, SAJEEVKUMAR V A, et al. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles[J]. Carbohydrate Polymers, 2014,105:285-292.
doi: 10.1016/j.carbpol.2014.01.057 pmid: 24708982
[22] FUJISAWA Shuji, IKEUCHI Tomoyasu, TAKEUCHI Miyuki, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies[J]. Biomacromolecules, 2012,13:2188-2194.
doi: 10.1021/bm300609c pmid: 22642863
[1] 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[2] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/ 氧化纤维素/ 南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
[3] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[4] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[5] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[6] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[7] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[8] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[9] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[10] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/ 银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[11] 赵兵, 黄小萃, 祁宁, 钟洲, 车明国, 葛亮亮. 基于共价结合的纳米银抗菌棉织物研究进展[J]. 纺织学报, 2020, 41(03): 188-196.
[12] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/ 银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(03): 113-117.
[13] 吴倩倩, 李珂, 杨立双, 付译鋆, 张瑜, 张海峰. 载药聚偏氟乙烯伤口敷料的制备及其性能 [J]. 纺织学报, 2020, 41(01): 26-31.
[14] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[15] 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!