纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 107-115.doi: 10.13475/j.fzxb.20191001309

• 染整与化学品 • 上一篇    下一篇

紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物

王阳1, 程春祖2, 姜丽娜1, 任元林1,3(), 郭迎宾1   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.中国纺织科学研究院有限公司, 北京 100025
    3.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2019-10-08 修回日期:2020-06-22 出版日期:2020-10-15 发布日期:2020-10-27
  • 通讯作者: 任元林
  • 作者简介:王阳(1996—),女,硕士生。主要研究方向为阻燃高分子材料。
  • 基金资助:
    国家自然科学基金面上项目(51573134);国家自然科学基金面上项目(21975182)

Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating

WANG Yang1, CHENG Chunzu2, JIANG Li'na1, REN Yuanlin1,3(), GUO Yingbin1   

  1. 1. School of Textile Science and Technology, Tiangong University, Tianjin 300387, China
    2. China Textile Academy, Beijing 100025, China
    3. Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2019-10-08 Revised:2020-06-22 Online:2020-10-15 Published:2020-10-27
  • Contact: REN Yuanlin

摘要:

针对聚丙烯腈(PAN)易燃以及传统阻燃技术易造成环境污染的弊端,采用紫外光(UV)诱导接枝聚合与溶胶-凝胶技术相结合,以提高PAN织物(腈纶织物)的阻燃性。首先,通过紫外光接枝聚合技术,将甲基丙烯酸缩水甘油酯(GMA)接枝到腈纶织物表面,制得接枝改性的腈纶织物。然后使用植酸尿素杂化的有机-无机杂化硅溶胶对接枝织物进行后整理,获得阻燃腈纶织物。借助热重分析及锥形量热测试对织物的热性能及燃烧性能进行了表征与分析。结果表明:阻燃织物的残炭率高达31.4%,阻燃织物的热释放速率峰值和烟雾生成速率峰值分别由374.4 kW/m2和0.06 m2/s下降到186.7 kW/m2和0.03 m2/s,织物表现出优良的阻燃和抑烟性能; 经过30次洗涤后,阻燃腈纶织物的极限氧指数值仍可以保留在27.3%,具有良好的阻燃耐久性。

关键词: 腈纶织物, 阻燃织物, 光接枝聚合, 甲基丙烯酸缩水甘油酯, 溶胶-凝胶

Abstract:

In view of the poor flammability of polyacrylonitrile (PAN) and environmental problems caused by traditional flame retardant technologies, ultraviolet (UV)-induced photo-grafting polymerization combined with sol-gel technology was used to improve the flame resistance of PAN fabrics. A PAN fabric grafted with glycidyl methacrylate (GMA) was firstly prepared by means of UV-induced photo-grafting polymerization technology. The PAN-g-GMA was then coated with an organic-inorganic hybrid silica sol doped with phytic acid and urea to obtain a flame retardant PAN fabric. The thermogravimetric analysis and cone calorimeter test were used to characterize the thermal and combustion properties. The results show that the char residue of the FR-PAN is as high as 31.4%. In addition, the peak of heat release rateand the peak of smoke production rate of flame retardant PAN fabrics decreases from 374.4 kW/m2 and 0.06 m2/s to 186.7 kW/m2 and 0.03 m2/s, respectively. All the results indicate that the FR-PAN fabric performs excellently in flame retardancy and demonstrate good smoke suppression performance. The limiting oxygen index value of the flame retardant PAN fabric remains 27.3% after 30 times washing cycles, indicating good durable flame retardant performance.

Key words: polyacrylonitrile fabric, flame retardant fabric, photo-grafting polymerization, glycidyl methacrylate, sol-gel

中图分类号: 

  • TS156

图1

阻燃腈纶织物的制备示意图"

图2

聚丙烯腈和改性腈纶织物的XRD谱图"

图3

聚丙烯腈和改性腈纶织物的XPS谱图"

表1

不同样品的元素含量"

样品 C1s O1s N1s P2p Si2p
空白织物 81.93 10.86 7.21 0 0
接枝织物 75.30 18.07 3.36 0 0
阻燃织物 43.28 35.77 4.83 5.75 9.79
残炭 68.61 15.62 9.02 4.40 1.07

图4

聚丙烯腈和改性腈纶织物的TG曲线"

图5

聚丙烯腈和改性腈纶织物的DTG曲线"

图6

聚丙烯腈和改性腈纶织物的DSC曲线"

图7

聚丙烯腈、改性腈纶织物及残炭的红外图谱"

图8

阻燃样品在不同温度下的红外光谱"

图9

阻燃织物的Py-GC/MS谱图"

图10

空白织物和阻燃织物的燃烧曲线"

表2

阻燃样品的锥形量热数据"

样品 点燃时
间/s
热释放速
率峰值/
(kW·m-2)
到达热释
放速率峰值
时间/s
总热释
放量/
(MJ·m-2)
烟雾生成
速率峰值/
(m2·s-1)
总烟雾生
成量/m2
平均质量
损失率/
(g·s-1)
残炭
量/%
火灾增长
速率常数
空白织物 25 374.4 45 7.3 0.06 1.5 0.020 38.0 8.32
阻燃织物 42 186.7 60 7.0 0.03 0.7 0.008 66.4 3.11

表3

空白织物和阻燃腈纶织物水洗前后的LOI值"

样品 0 5次 10次 20次 30次
空白织物 17.0 - - - -
阻燃织物 33.4 33.1 30.4 29.2 27.3

图11

不同样品的SEM照片"

[1] ALONGI J, COLLEONI C, ROSACE G, et al. Sol-gel derived architectures for enhancing cotton flame retardancy: effect of pure and phosphorus-doped silica phases[J]. Polymer Degradation and Stability, 2014,99:92-98.
doi: 10.1016/j.polymdegradstab.2013.11.020
[2] HRIBERNIK S, SMOLE M S, KLEINSCHEKA K S, BELEB M, et al. Flame retardant activity of SiO2-coated regenerated cellulose fibres[J]. Polymer Degradation and Stability, 2007,92:1957-1965.
doi: 10.1016/j.polymdegradstab.2007.08.010
[3] GRANCARIC A M, COLLEONI C, GUIDO E, et al. Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric[J]. Progress in Organic Coating, 2017,103:174-181.
doi: 10.1016/j.porgcoat.2016.10.035
[4] CHENG X, LIANG C, GUAN J, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018,427:69-80.
doi: 10.1016/j.apsusc.2017.08.021
[5] REN Yuanlin, GU Yetong, ZENG Qian, et al. UV-induced surface grafting polymerizationfor preparing phosphorus-containing flame retardant polyacrylonitrile fabric[J]. European Polymer Journal, 2017,94:1-10.
doi: 10.1016/j.eurpolymj.2017.06.037
[6] REN Yuanlin, JIANG Lina, TIAN Tian, et al. Durable flame retardant polyacrylonitrile fabric via UV-induced grafting polymerization and surface chemical modi-fication[J]. RSC Advances, 2018,8:41389-41396.
doi: 10.1039/C8RA09005J
[7] REN Yuanlin, QIN Yiweni, LIU Xiaohui, et al. Flame-retardant polyacrylonitrile fabric prepared by ultraviolet-induced grafting with glycidyl methacrylate followed by ammoniation and phosphorylation[J]. Journal of Applied Polymer Science, 2018,135:46752.
doi: 10.1002/app.46752
[8] REN Yuanlin, ZHANG Yue, ZHAO Jieyun, et al. Phosphorus-doped organic-inorganic hybrid silicon coating for improving fire retardancy of polyacrylonitrile fabric[J]. Journal of Sol-Gel Science and Technology, 2017,82:280-288.
doi: 10.1007/s10971-016-4273-z
[9] REN Yuanlin, HUO Tongguo, QIN Yiwen. Preparation of flame retardant polyacrylonitrile fabric based on sol-gel and layer-by-layer assembly[J]. Fire Materials, 2018,11:483-496.
[10] XU G, ZHAO Y, HOU L, et al. A recyclable phosphinic acid functionalized polyacrylonitrile fiber for selective and efficient removal of Hg 2+ [J]. Chemical Engineering Journal, 2017,325:533-543.
doi: 10.1016/j.cej.2017.04.135
[11] ZHAO R, LI X, SUN B, et al. Preparation of phosphorylated polyacrylonitrile-based nanofiber mat and its application for heavy metal ion removal[J]. Chemical Engineering Journal, 2015,268:290-299.
doi: 10.1016/j.cej.2015.01.061
[12] DANELUTI A L M, MATOS J R. Study of thermal behavior of phytic acid[J]. Brazilian Journal of Pharmaceutical Sciences, 2013,49:275-283.
[13] MARTIN S C, LIGGAT J J, SNAPE C E. In situ NMR investigation into the thermal degradation and stabilisation of PAN[J]. Polymer Degradation and Stability, 2001,74:407-412.
doi: 10.1016/S0141-3910(01)00173-2
[14] SURIANARAYANAN M, VIJAVARAGHAVAN R, RAGHAVAN K V. Spectroscopic investigations of polyacrylonitrile thermal degradation[J]. Journal of Polymer Science Part A, 1998,36:2503-2512.
doi: 10.1002/(ISSN)1099-0518
[15] JOSEPH P, TRETSIAKOVA-MCNALLY S. Combustion behaviors of chemically modified polyacrylonitrile polymers containing phosphoryl-amino groups[J]. Polymer Degradation and Stability, 2012,97:2531-2535.
doi: 10.1016/j.polymdegradstab.2012.07.014
[16] GRASSIE N, MCGUCHAN R. Pyrolysis of polyacrylonitrile and related polymers:Ⅱ:the effect of sample preparation on the thermal behavior of polyacrylonitrile[J]. European Polymer Journal, 1971,7:1091-1104.
doi: 10.1016/0014-3057(71)90141-8
[17] JU A, GUANG S, XU H. Effect of comonomer structure on the stabilization and spinnability of polyacrylonitrile copolymers[J]. Carbon, 2013,54:323-335.
doi: 10.1016/j.carbon.2012.11.044
[18] ZHANG J, HORROCKS A R, HALL M E. The flammability of polyacrylonitrile and its copolymers. IV The flame retardant mechanism of ammonium polyphosphate[J]. Fire Materials, 2010,18:307-312.
doi: 10.1002/(ISSN)1099-1018
[19] REN Yuanlin, SU Qian, CHENG Bowen. Preparation and properties of halogen-free fire retardant acrylonitrile copolymer[J]. Chemical Journal of Chinese Universities, 2013,34:2216-2222.
[20] ZHANG Yue, REN Yuanlin, LIU Xiaohui, et al. Preparation of durable flame retardant PAN fabrics based on amidoximation and phosphorylation[J]. Applied Surface Science, 2018,428:395-403.
doi: 10.1016/j.apsusc.2017.09.155
[21] SOKKER H H, BADAWY S M, ZAYED E M, et al. Radiation-induced grafting of glycidyl methacrylate onto cotton fabric waste and its modification for anchoring hazardous wastes from their solutions[J]. Journal of Hazardous Materials, 2009,168:137-144.
doi: 10.1016/j.jhazmat.2009.02.039 pmid: 19297095
[22] RAJAEI M, WANG D Y, BHATTACHARYYA D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites[J]. Composites Part B: Engineering, 2017,113:381-390.
doi: 10.1016/j.compositesb.2017.01.039
[1] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[2] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/ 封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[3] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[4] 刘晋旭, 刘鹏清. 织物阻燃表面处理技术研究进展[J]. 纺织学报, 2020, 41(10): 178-187.
[5] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell 织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[6] 凡力华, 宋伟华, 王潮霞. 紫外光还原氧化石墨烯腈纶织物抗静电性能[J]. 纺织学报, 2019, 40(05): 97-101.
[7] 刘新华 储兆洋 李永 杨旭. 巯基-过硫酸钾表面引发聚合体系的构建及其在羽毛表面接枝的应用[J]. 纺织学报, 2017, 38(12): 14-19.
[8] 盛杰侦 闫新 秦俊霞 曹机良. 不对称咪唑类离子液体对腈纶缓染性能的影响[J]. 纺织学报, 2016, 37(10): 68-72.
[9] 于鹏美 庄亚丽 毕力 秦传香 陈国强. 半花菁荧光染料光稳定性的量子化学计算[J]. 纺织学报, 2016, 37(06): 83-90.
[10] 陈志军 刘兴乔 柳浩 罗云英 黄年华. 苎麻织物紫外光接枝阻燃改性研究[J]. 纺织学报, 2014, 35(4): 79-0.
[11] 刘玉强 陈楠楠 吕红 田保中. 纳米氧化锌-氧化铁混合溶胶对涤纶织物的抗静电效果[J]. 纺织学报, 2013, 34(4): 85-88.
[12] 殷允杰 王潮霞. UV光开关可控棉织物亲水-疏水表面性能及机制研究[J]. 纺织学报, 2013, 34(2): 120-124.
[13] 李明超 张毅. 溶胶-凝胶法在玻璃纤维表面制备锑掺杂二氧化锡薄膜的工艺[J]. 纺织学报, 2013, 34(11): 11-0.
[14] 杨洪祥;周存;徐进云. SiO2/TiO2/聚酰亚胺复合杂化环氧树脂基碳纤维浆料的制备与表征[J]. 纺织学报, 2010, 31(5): 63-68.
[15] 朱曜峰;丁艳杰;傅雅琴. 碳纤维负载TiO2光催化薄膜的制备及其性能[J]. 纺织学报, 2010, 31(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!