纺织学报 ›› 2020, Vol. 41 ›› Issue (10): 34-40.doi: 10.13475/j.fzxb.20190502707
XU Shoudong(), LENG Yijin, WU Guoxin
摘要:
为解决籽棉颜色分级问题,构造了一个基于L*a*b*颜色空间的色度检测仪,主要由颜色传感器、光源及外围电路构成。针对用于籽棉颜色等级检测2个关键指标(反射率、黄度)输出不稳定问题,采用了4层BP神经网络和5块标准色板进行反复训练,使得校准后的反射率的变异系数小于0.21%,黄度的变异系数小于1.13%。在籽棉颜色等级检测实验中,制作了覆盖12个颜色等级的480个测试样。经过反复实验发现,使用该色度检测仪对1个测试样品,需要均匀分布10个测量点结果的平均值,才能得到稳定的色度测量值。最后,采用神经网络方法,对480个籽棉试样数据进行分析,其中:80%用于训练;20%用于识别。实验结果表明,对12个颜色等级的480个样品进行测试,得到的检测准确率都超过了90%。
中图分类号:
[1] |
连素梅, 俸冰, 陆世栋, 等. HX-410型手持式棉花测色仪性能分析[J]. 中国棉花, 2017,44(2):34-36.
doi: 10.11963/issn.1000-632X.201702011 |
LIAN Sumei, FENG Bing, LU Shidong, et al. Performance analysis of a hand-held cotton color measuring instrument[J]. China Cotton, 2017,44(2):34-36.
doi: 10.11963/issn.1000-632X.201702011 |
|
[2] | 冯志新, 安浩平, 吴顺丽. 基于RGB颜色模型棉花杂质检测算法[J]. 计算机与现代化, 2013(4):99-102. |
FENG Zhixin, AN Haoping, WU Shunli. Cotton impurity rate detection system design based on machine vision[J]. Computer and Modernization, 2013(4):99-102. | |
[3] | 陆永良, 袁裕禄, 李云飞. 基于国际颜色模型(CIELAB)的棉花颜色级测试方法研究[J]. 中国纤检, 2016(3):90-93. |
LU Yongliang, YUAN Yulu, LI Yunfei. A study on the cotton color grade test method based on international color model (CIELAB)[J]. China Fiber Inspection, 2016(3):90-93. | |
[4] | 赵瑞浩. 棉花新国标对HVI测试的影响及对策研究[D]. 上海:东华大学, 2014: 5. |
ZHAO Ruihao. Research on the effects and countermeasures on testing by HVI of the new national standaRd of cotton[D]. Shanghai:Donghua University, 2014: 5. | |
[5] | 徐守东, 梁后军, 吴国新. 籽棉颜色级检测仪的研制[J]. 中国棉花加工, 2017(6):26-29. |
XU Shoudong, LIANG Houjun, WU Guoxin. Research on instrument of seed cotton color classing system[J]. China Cotton Processing, 2017(6):26-29. | |
[6] | 王文颖, 王立永. 影响HVI抽检指标相符率的因素及改善措施[J]. 中国纤检, 2012(4):46-48. |
WANG Wenying, WANG Liyong. The impacting F and improving measurement to corresponding rate of HVI checking index[J]. China Fiber Inspection, 2012(4):46-48. | |
[7] | THOMASSON J A. Foreign matter effects on cotton color measurement: determination and correction[J]. Transactions of the ASME, 1993,36(3):663-669. |
[8] |
THOMASSON J A, SHEARER S A, BYLER R K. Image-processing solution to cotton color measurement problems: part I. instrument design and construc-tion[J]. Transactions of the ASAE, 2005, 48(2):421-438.
doi: 10.13031/2013.18307 |
[9] |
THOMASSON J A, SHEARER S A, BOYKIN D L. Image-processing solution to cotton color measurement problems: part Ⅱ. instrument test and evaluation[J]. Transactions of the ASAE, 2005,48(2):439-454.
doi: 10.13031/2013.18310 |
[10] |
KANG T J, KIM S C. Objective evaluation of the trash and color of raw cotton by image processing and neural network[J]. Textile Research Journal, 2002,72(9):776-782.
doi: 10.1177/004051750207200905 |
[11] | WILKERSON J B, MOODY F H, HART W E, et al. Design and evaluation of a cotton flow rate sensor[J]. Journal of Electronic Packaging, 2001,6(6):1415-1420. |
[12] |
MUNEEM Shahriar, IAN Scott Fleming, HAMED Sari Sarraf, et al. A machine vision system to estimate cotton fiber maturity from longitudinal view using a transfer learning approach[J]. Machine Vision and Applications, 2013,24:1661-1683.
doi: 10.1007/s00138-013-0506-0 |
[13] | 张建华, 祁力钧, 冀荣华, 等. 基于粗糙集和BP神经网络的棉花病害识别[J]. 农业工程学报, 2012,28(7):161-167. |
ZHANG Jianhua, QI Lijun, JI Ronghua, et al. Cotton diseases identification based on rough sets and BP neural network[J]. Transactions of The Chinese Society of Agricultural Engineering, 2012,28(7):161-167. | |
[14] | 袁灿, 唐川田, 李文钊. 一种基于神经网络和遗传算法的桥梁加速度传感器优化布置方法[J]. 西华大学学报(自然科学版), 2018,37(2):13-19. |
YUAN Can, TANG Chuantian, LI Wenzhao. A optimal placement method of bridge acceleration sensor based on neural network and genetic algorithm[J]. Journal of Xihua University(Natural Science Edition), 2018,37(2):13-19. | |
[15] | 李尚平, 陈曾雄, 周敬辉, 等. BP神经网络对甘蔗宿根切割质量的预测[J]. 农机化研究, 2018,4(10):11-17. |
LI Shangping, CHEN Zengxiong, ZHOU Jinghui, et al. Prediction model of cutting quality of the sugarcane ratoon by BP neural network: based on PSO algori-them[J]. Journal of Agricultural Mechanization Research, 2008,4(10):11-17. | |
[16] |
LIU J, WANG H, SUN Y, et al. Real-coded quantum-inspired genetic algorithm-based BP neural network algorithm[J]. Mathematical Problems in Engineering, 2015,3(2):1-10.
doi: 10.1155/S1024123X9700046X |
[1] | 肖琪, 王瑞, 孙红玉, 方纾, 李聃阳. 织物起毛起球机制的理论模型研究进展[J]. 纺织学报, 2020, 41(02): 172-178. |
[2] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
[3] | 韦平 张林 刘翔 王冬 苏真伟. 籽棉中异性纤维的双光源成像检测方法[J]. 纺织学报, 2017, 38(04): 32-38. |
[4] | 杨建国 熊经纬 徐兰 项前. 应用混合种群遗传神经网络的精梳毛纺工艺参数反演模型[J]. 纺织学报, 2016, 37(07): 149-154. |
[5] | 曹秋玲 朱苏康. 营盘出土籽棉的鉴定与古代西域的棉花利用[J]. 纺织学报, 2013, 34(12): 16-0. |
[6] | 庹武;陈谦. 基于改进BP神经网络的的西服肩袖造型研究[J]. 纺织学报, 2010, 31(8): 113-116. |
[7] | 刘茜;王玉亮. ANN与模糊算法在毛精纺织机效率预报中的对比[J]. 纺织学报, 2009, 30(01): 55-59. |
[8] | 项前;杨建国;程隆棣. 基于支持向量机的纱线质量预测[J]. 纺织学报, 2008, 29(4): 43-46. |
[9] | 丛芳;赵野军. 基于神经网络的服装制板系统[J]. 纺织学报, 2008, 29(1): 129-132. |
[10] | 吕志军;项前;殷祥刚;杨建国. 知识表达及其在毛纺织工艺设计中的应用[J]. 纺织学报, 2005, 26(6): 115-117. |
[11] | 陈雁;李栋高. 判别颜色感觉的人工神经网络方法[J]. 纺织学报, 2005, 26(1): 64-66. |
[12] | 成玲;万振凯;臧海英. 基于神经网络的织物风格识别系统探讨[J]. 纺织学报, 2002, 23(03): 69-70. |
[13] | 张瑞林;蒋静坪. 人工神经网络识别丝织物的研究[J]. 纺织学报, 2002, 23(02): 58-60. |
[14] | 张瑞林. 人工神经网络评价丝织物织物风格研究[J]. 纺织学报, 2001, 22(03): 46-48. |
[15] | 张瑞林. 人工神经网络控制粗梳毛纺质量的研究[J]. 纺织学报, 2001, 22(01): 41-43. |
|