纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 109-115.doi: 10.13475/j.fzxb.20200202607

• 染整与化学品 • 上一篇    下一篇

超高分子量聚乙烯纤维的无卤阻燃整理

杨雅茹1,2(), 沈小军1,2, 唐柏林1,2, 牛梅3   

  1. 1.嘉兴学院 材料与纺织工程学院, 浙江 嘉兴 314001
    2.嘉兴学院 浙江省纱线材料成型与复合加工技术研究重点实验室, 浙江 嘉兴 314001
    3.太原理工大学 轻纺工程学院, 山西 晋中 030600
  • 收稿日期:2020-02-13 修回日期:2020-07-11 出版日期:2020-11-15 发布日期:2020-11-26
  • 作者简介:杨雅茹(1991—),女,讲师,博士。主要研究方向为功能纺织材料及阻燃材料。E-mail: yyr0515@zjxu.edu.cn
  • 基金资助:
    国家建设高水平大学公派研究生项目(201706930007);国家自然科学基金青年科学基金项目(51902135);浙江省纱线材料成型与复合加工技术研究重点实验室开放基金项目(MTC2020-09);浙江省纱线材料成型与复合加工技术研究重点实验室开放基金项目(MTC2019-12)

Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber

YANG Yaru1,2(), SHEN Xiaojun1,2, TANG Bolin1,2, NIU Mei3   

  1. 1. College of Materials and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    2. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2020-02-13 Revised:2020-07-11 Online:2020-11-15 Published:2020-11-26

摘要:

为提高超高分子量聚乙烯(UHMWPE)纤维的阻燃性能,采用兼具阻燃和抑烟作用的氢氧化镁包覆碳微球(MH-CMSs)作为阻燃剂,以钛酸四丁酯和亚磷酸三苯酯作为活化剂,依次通过除杂—活化—浸轧—烘焙的方法对UHMWPE纤维进行阻燃改性。测试了纤维的阻燃性能、力学性能以及热稳定性,研究其阻燃作用机制。结果表明:该方法能在不损害UHMWPE纤维力学性能的同时有效提高其阻燃性能;与纯UHMWPE纤维相比,经阻燃整理后得到的FR-UHMWPE纤维的极限氧指数(LOI值)可提高36%以上,峰值热释放速率降低幅度达39.3%,且纤维的发烟和熔滴现象也得到改善,火灾危险性显著降低;FR-UHMWPE纤维表现出凝聚相阻燃机制,阻燃整理促进了UHMWPE热降解成炭,使其在燃烧时形成了致密连续的炭层,该炭层能有效阻止热与质的传递,从而起到阻燃作用。

关键词: 高性能纤维, 超高分子量聚乙烯, 阻燃整理, 无卤阻燃, 阻燃机制

Abstract:

In order to improve the flame retardant properties of ultra-high molecular weight polyethylene (UHMWPE) fiber, carbon microspheres coated by magnesium hydroxide (MH-CMSs), which have both flame retardant and smoke suppression effect, were used as flame retardants, and tetrabutyl titanate and triphenyl phosphite were used as surfactants. The UHMWPE fibers were modified using the procedure of impurity removal—activation—padding—baking. The flame retardant properties, mechanical properties and thermal stability of these fibers were tested, and the flame retardant mechanism was studied. The research results show that this method is able to improve effectively the flame retardancy of UHMWPE fiber without harming its mechanical properties. Compared with pure UHMWPE fiber, the limited oxygen index of flame retardant UHMWPE (FR-UHMWPE) fiber is increased more than 36%, the peak heat release rate is reduced by up to 39.3%. In addition, smoke and molten droplets of the UHMWPE fibers are suppressed, and the fire risk is significantly reduced. The FR-UHMWPE fiber exhibits condensed phase flame retardant mechanism. The flame retardant finishing promotes the degradation of UHMWPE into carbon, which forms a dense and continuous char layer during the combustion process. This char layer can effectively prevent the transfer of heat and mass, and thus has a flame retardant effect.

Key words: high-performance fiber, ultra-high molecular weight polyethylene, flame retardant finishing, halogen-free flame retardant, flame retardant mechanism

中图分类号: 

  • TH145.23

图1

MH-CMSs阻燃剂的透射电镜照片和红外光谱图"

图2

MH-CMSs阻燃剂的TG曲线"

图3

阻燃处理前后UHMWPE纤维的SEM照片"

图4

阻燃处理前后UHMWPE纤维的红外光谱"

表1

FR-UHMWPE纤维的燃烧性能"

样品 质量
增加率/%
LOI值/
%
续燃时间/
s
融滴数
纯UHMWPE纤维 17.5 燃尽 16
1# FR-UHMWPE纤维 9.5 23.8 10 12
2# FR-UHMWPE纤维 15.6 24.6 6 5
3# FR-UHMWPE纤维 21.4 24.1 5 3

图5

FR-UHMWPE纤维的热释放速率曲线"

表2

FR-UHMWPE纤维的锥形量热仪测试数据"

样品 TTI/s pk-HRR/
(kW·m-2)
THR/
(MJ·m2)
TSR/
m3
TTI/
pk-HRR
纯UHMWPE纤维 3 169.7 24.9 204.1 0.018
1#FR-UHMWPE纤维 13 168.3 23.2 110.8 0.077
2#FR-UHMWPE纤维 17 119.1 17.7 99.1 0.143
3#FR-UHMWPE纤维 15 102.9 19.4 127.4 0.146

表3

FR-UHMWPE纤维的力学性能"

样品 断裂强度/
(cN·dtex-1)
断裂强力/
N
断裂伸长率/
%
纯UHMWPE纤维 33.0 350 3.0
1# FR-UHMWPE纤维 34.1 355 2.5
2# FR-UHMWPE纤维 35.8 370 2.2
3# FR-UHMWPE纤维 38.5 383 2.1

图6

UHMWPE纤维和FR-UHMWPE纤维的TG曲线"

图7

UHMWPE纤维和FR-UHMWPE 纤维炭层的SEM照片"

[1] 徐海燕. 捻度对超高分子质量聚乙烯纱线可编织性的影响[J]. 纺织学报, 2013,34(11):44-48.
XU Haiyan. Effect of twist on the weavability of ultra-high molecular weight polyethylene yarns[J]. Journal of Textile Research, 2013,34(11):44-48.
[2] 王晓春, 张健飞, 张丽平, 等. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020,41(3):78-83.
WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, et al. Effect of highly hydrophobic dye structure on dyeing performance of ultra-high molecular weight polyethylene fibers[J]. Journal of Textile Research, 2020,41(3):78-83.
[3] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019,40(6):159-165.
CHEN Xiaogang. Review of research on textile-based bulletproof and puncture-resistant materials[J]. Journal of Textile Research, 2019,40(6):159-165.
[4] 杜晗笑, 郑振荣, 曹森学, 等. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018,39(4):93-99.
DU Hanxiao, ZHENG Zhenrong, CAO Senxue, et al. Preparation and characterization of ultra-hydrophobic aerogel-coated UHMWPE fabrics[J]. Journal of Textile Research, 2018,39(4):93-99.
[5] 马文俊. 超高分子量聚乙烯(UHMWPE)纤维/织物表面改性及阻燃性能研究[D]. 北京:北京化工大学, 2015: 7-8.
MA Wenjun. Study on surface modification and flame retardancy of ultra high molecular weight polyethylene (UHMWPE) fibers/fabrics[D]. Beijing: Beijing University of Chemical Technology, 2015: 7-8.
[6] QIAO Xiuying, NA Mingyu, GAO Ping, et al. Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification[J]. Polymer Testing, 2017,57:133-140.
doi: 10.1016/j.polymertesting.2016.11.024
[7] 许海霞, 张振雷, 吴喜龙, 等. 一种超高分子量聚乙烯阻燃编织带及其制备方法: 2015105640371[P]. 2015-12-09.
XU Haixia, ZHANG Zhenlei, WU Xilong, et al. Ultra-high molecular weight polyethylene flame-retardant woven tape and preparation method thereof: 2015105640371[P]. 2015-12-09.
[8] 马文俊, 邱日祥, 张胜, 等. 超高分子质量聚乙烯纤维的浸轧阻燃整理[J]. 印染, 2015 (4):37-44.
MA Wenjun, QIU Rixiang, ZHANG Sheng, et al. Padded flame retardant finishing of ultra-high molecular weight polyethylene fibers[J]. China Dyeing & Finishing, 2015 (4):37-44.
[9] 郑振荣, 杜晗笑, 赵晓明, 等. 一种阻燃超高分子量聚乙烯织物及其制备方法: 2016106384644[P]. 2016-11-09
ZHENG Zhenrong, DU Hanxiao, ZHAO Xiaoming, et al. A flame-retardant ultra-high molecular weight polyethylene fabric and its preparation method: 2016106384644[P]. 2016-11-09
[10] 杜晗笑, 郑振荣, 曹森学, 等. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018,39(4):93-99.
DU Hanxiao, ZHENG Zhenrong, CAO Senxue, et al. Preparation and characterization of ultra-hydrophobic aerogel coated ultra-high molecular weight polyethylene fabrics[J]. Journal of Textile Research, 2018,39(4):93-99.
[11] 杜晗笑, 曹森学, 陈逢亮, 等. 超高分子量聚乙烯纤维阻燃性能的研究现状[J]. 天津纺织科技, 2016(3):37-39.
DU Hanxiao, CAO Senxue, CHEN Fengliang, et al. Research status of flame retardant properties of UHMWPE fibers[J]. Tianjin Textile Science and Technology, 2016(3):37-39.
[12] YANG Y, NIU M, LI J, et al. Preparation of carbon microspheres coated magnesium hydroxide and its application in polyethylene terephthalate as flame retardant[J]. Polymer Degradation and Stability, 2016,134:1-9.
doi: 10.1016/j.polymdegradstab.2016.09.019
[13] 徐晓楠. 新一代评估方法: 锥形量热仪(CONE)法在材料阻燃研究中的应用[J]. 中国安全科学学报, 2003,13(1):19-22.
XU Xiaonan. Application of a new generation of evaluation method-cone calorimeter (CONE) method in flame retardancy of materials[J]. Chinese Journal of Safety Science, 2003,13(1):19-22.
[14] WANG Zhi, NING Xiaoyao, ZHU Kang, et al. Evaluating the thermal failure risk of large-format lithium-ion batteries using a cone calorimeter[J]. Journal of Fire Sciences, 2019,37(1):81-95.
doi: 10.1177/0734904118816616
[15] ZHANG Xianshen, YAN Xiong, SHI Meiwu. The flame retardancy and pyrolysis mechanismof polyimide fibers investigated by cone calorimeter and pyrolysis-gas chromatography-mass spectrometry[J]. Journal of Industrial Textiles, 2018,48(2):465-481.
doi: 10.1177/1528083717732077
[16] WEI Ruichao, HUANG Shenshi, HUANG Que, et al. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2018,134:1471-1480.
doi: 10.1007/s10973-018-7410-9
[17] SHI Long, CHEW Michael, YIT Lin. Fire behaviors of polymers under autoignition conditions in a cone calorimeter[J]. Fire Safety Journal, 2013,61:243-253.
doi: 10.1016/j.firesaf.2013.09.021
[18] SHEN Ruiqing, HATANAKA Logan C, AHMED Lubna, et al. Cone calorimeter analysis of flame retardant poly(methyl methacrylate)-silica nanocomposites[J]. Journal of Thermal Analysis and Calorimetry, 2017,128(3):1443-1451.
doi: 10.1007/s10973-016-6070-x
[19] 黄锐, 杨立中, 方伟峰, 等. 火灾烟气危害性研究及其进展[J]. 中国工程科学, 2002,4(7):80-85.
HUANG Rui, YANG Lizhong, FANG Weifeng, et al. Research and progress of fire smoke hazards[J]. Chinese Engineering Science, 2002,4(7):80-85.
[20] LI Xin, OU Yuxiang, SHI Yanshan. Combustion behavior and thermal degradation properties of epoxy resins with a curing agent containing a caged bicyclic phosphate[J]. Polymer Degradation and Stability, 2002,77(3):383-390.
doi: 10.1016/S0141-3910(02)00075-7
[21] 漆东岳, 于宾, 赵晓明. 浸渍整理对PAN预氧化纤维/芳纶复合滤料性能影响研究[J]. 化工新型材料, 2019,47(1):122-125.
QI Dongyue, YU Bin, ZHAO Xiaoming. Effect of impregnation finishing on properties of PAN pre-oxidized fiber/aramid composite filter material[J]. Advanced Chemical Materials, 2019,47(1):122-125.
[22] KOROBEINICHEV O P, GONCHIKZHAPOV M B, PALETSKY A A, et al. Counterflow flames of ultrahigh-molecular-weight polyethylene with and without triphenylphosphate[J]. Combustion and Flame, 2016,169:261-271.
doi: 10.1016/j.combustflame.2016.04.019
[23] YU Bin, SHI Yongqian, YUAN Bihe, et al. Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocom-posites[J]. Journal of Materials Chemistry A, 2015,3(15):8034-8044.
doi: 10.1039/C4TA06613H
[24] CAI Jing, HENG Hhuiming, HU Xiaoping, et al. A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP[J]. Polymer Degradation and Stability, 2016,126:47-57.
doi: 10.1016/j.polymdegradstab.2016.01.013
[1] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2 对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[2] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[3] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[4] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[5] 王晓春, 张健飞, 张丽平, 王娜娜, 闫金龙, 赵国樑. 高疏水染料结构对超高分子量聚乙烯纤维染色性能的影响[J]. 纺织学报, 2020, 41(03): 78-83.
[6] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell 织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[7] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[8] 王访鹤, 王锐, 魏丽菲, 王照颖, 张安莹, 王德义. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11): 106-112.
[9] 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈纤维阻燃改性研究进展[J]. 纺织学报, 2019, 40(08): 181-188.
[10] 吴利伟, 王伟, 林佳弘, 姜茜. 芳纶/超高分子量聚乙烯织物增强聚氨酯夹芯复合材料制备及其力学性能[J]. 纺织学报, 2019, 40(07): 64-70.
[11] 任元林, 姜丽娜, 霍同国, 田甜. 聚丙烯腈无卤阻燃及其抑烟技术研究进展[J]. 纺织学报, 2019, 40(07): 182-188.
[12] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[13] 张安莹, 王照颖, 王锐, 董振峰, 魏丽菲, 王德义. 阻燃聚左旋乳酸及其纤维的制备与结构性能[J]. 纺织学报, 2019, 40(04): 7-14.
[14] 李强林, 黄方千, 肖秀婵, 邱诚, 吴菊珍. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019, 40(04): 177-184.
[15] 关晋平, 匡小慧, 唐人成, 陈国强. 氯化铁对多巴胺改性蚕丝织物的功能整理[J]. 纺织学报, 2019, 40(02): 130-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!