纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 19-26.doi: 10.13475/j.fzxb.20200302108

• 纤维材料 • 上一篇    下一篇

磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能

王利媛1,2, 康卫民1,2, 庄旭品1,2, 鞠敬鸽1,2, 程博闻1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2020-03-09 修回日期:2020-08-14 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 程博闻
  • 作者简介:王利媛(1990—),女,博士生。主要研究方向为纳米纤维复合质子交换膜。
  • 基金资助:
    国家自然科学基金项目(51873152);天津市科技计划项目(19PTSYJC00010)

Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers

WANG Liyuan1,2, KANG Weimin1,2, ZHUANG Xupin1,2, JU Jingge1,2, CHENG Bowen1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membrane and Membrane Process, Tiangong University, Tianjin 300387, China
  • Received:2020-03-09 Revised:2020-08-14 Online:2020-11-15 Published:2020-11-26
  • Contact: CHENG Bowen

摘要:

为开发燃料电池用高性能全氟磺酸(Nafion)质子交换膜,采用静电纺丝技术制备不同磺化度的磺化聚醚砜(SPES)纳米纤维,将其作为添加剂引入Nafion基体中,制备SPES纳米纤维/Nafion复合质子交换膜。探讨纺丝液浓度、纺丝电压、接收距离对SPES纳米纤维纺丝过程及纤维形貌的影响。在最优纺丝工艺下,着重研究不同磺化度SPES纳米纤维对复合膜微观结构、吸水率、溶胀率、质子传导率及甲醇渗透率等性能的影响。结果表明:在SPES质量分数为30%,纺丝电压为30 kV,接收距离为20 cm条件下制得磺化度为64%的SPES纳米纤维,将其作为添加剂构筑得到复合Nafion质子交换膜,该膜具有平衡的质子传导(0.144 S/cm)与甲醇渗透性(7.58×10-7 cm2/s),综合性能最佳,满足高性能甲醇燃料电池的应用需求。

关键词: 质子交换膜, 静电纺丝, 磺化聚醚砜, 纳米纤维, 质子传导率, 燃料电池

Abstract:

To develop high-performance Nafion proton exchange membranes for fuel cells, sulfonated polyethersulfone (SPES) nanofibers with different sulfonation degrees prepared via electrospinning technology were used as additives to construct SPES nanofibers/Nafion composite proton exchange membrane. The effects of solution concentration, spinning voltage and receiving distance on the spinning process and morphology of SPES nanofibers were discussed. Under the optimal process, the effects of SPES nanofibers with different sulfonation degrees on the microstructure, water absorption, swelling, proton conductivity, and methanol permeability of the composite membrane were studied. The results show that under the electrospinning parameters of solution concentration of 30%, spinning voltage of 30 kV and receiving distance of 20 cm, the composite Nafion membrane based on the optimal SPES nanofiber with sulfonation degree of 64% exhibits balanced proton conduction (0.144 S/cm) and methanol permeability (7.58×10-7 cm2/s). The composite membrane presents the best comprehensive performance, which meets the application needs of high-performance methanol fuel cells.

Key words: proton exchange membrane, electrospinning, sulfonated polyethersulfone, nanofiber, proton conductivity, fuel cell

中图分类号: 

  • TM911.48

图1

不同纺丝液质量分数SPES纳米纤维扫描电镜照片(×10 000)及其对应纤维直径分布图"

图2

不同纺丝电压下SPES纳米纤维扫描电镜照片(×10 000)及其对应纤维直径分布图"

图3

不同纺丝接收距离SPES纳米纤维扫描电镜照片(×10 000)及其对应纤维直径分布图"

图4

不同磺化度SPES纳米纤维扫描电镜照片(×10 000)及其对应纤维直径分布图"

图5

不同磺化度SPES/Nafion复合质子交换膜表面SEM照片(×2 000)"

图6

不同磺化度SPES/Nafion复合质子交换膜在40和80 ℃时的吸水率和溶胀率"

图7

不同磺化度SPES/Nafion复合膜的应力-应变曲线"

图8

不同磺化度SPES/Nafion复合膜的质子传导率与温度的关系"

图9

不同磺化度SPES/Nafion复合膜在40 ℃时的质子传导率及甲醇渗透率"

[1] 邢丹敏, 刘永浩, 衣宝廉. 燃料电池用质子交换膜的研究现状[J]. 电池, 2005(4):69-71.
XING Danmin, LIU Yonghao, YI Baolian. Research status of proton exchange membrane fuel cell[J]. Battery, 2005(4):69-71.
[2] LIM J W, LEE D, KIM M, et al. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): review[J]. Composite Structures, 2015,134:927-949.
doi: 10.1016/j.compstruct.2015.08.121
[3] SOOD R, CAVALIERE S, JONES D J, et al. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes[J]. Nano Energy, 2016,26:729-745.
doi: 10.1016/j.nanoen.2016.06.027
[4] CHAE K J, KIM K Y, CHOI M J, et al. Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells[J]. Chemical Engineering Journal, 2014,254:393-398.
doi: 10.1016/j.cej.2014.05.145
[5] YUAN Q, FU Z, WANG Y, et al. Coaxial electrospun sulfonated poly(ether ether ketone) proton exchange membrane for conductivity-strength balance[J]. Journal of Membrane Science, 2020,595:117516.
doi: 10.1016/j.memsci.2019.117516
[6] LEE J R, KIM N Y, LEE M S, et al. SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2011,367(1/2):265-272.
doi: 10.1016/j.memsci.2010.11.004
[7] 赵颖会, 顾迎春, 胡斐, 等. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020,41(1):184-189.
ZHAO Yinghui, GU Yingchun, HU Fei, et al. Research progress of aromatic polyamide nanofiber composites[J]. Journal of Textile Research, 2020,41(1):184-189.
[8] WANG S H, LIN H L. Poly(vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2014,257:254-263.
doi: 10.1016/j.jpowsour.2014.01.104
[9] 王航. 纳米纤维改性 Nafion 复合质子交换膜的制备与性能[D]. 天津:天津工业大学, 2016: 31-42.
WANG Hang. Preparation and properties of nanofiber modified Nafion composite proton exchange membrane[D]. Tianjin: Tiangong University, 2016: 31-42.
[10] MATSUMOTO K, HIGASHIHARA T, UEDA M. Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane[J]. Macromolecules, 2009,42(4):1161-1166.
doi: 10.1021/ma802637w
[11] SHABANI I, HASANI-SADRABADI M M, HADDADI-ASL V, et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications[J]. Journal of Membrane Science, 2011,368(1/2):233-240.
doi: 10.1016/j.memsci.2010.11.048
[12] 王哲, 倪宏哲, 范猛, 等. 磺化聚醚砜质子交换膜材料的合成与性能[J]. 高分子材料科学与工程, 2007,23(3):238-242.
WANG Zhe, NI Hongzhe, FAN Meng, et al. Synjournal and properties of sulfonated polyethersulfone proton exchange membrane materials[J]. Polymer Materials Science & Engineering, 2007,23(3):238-242.
[13] MUTHUMEENAL A, NEELAKANDAN S, RANA D, et al. Sulfonated polyethersulfone (SPES)-charged surface modifying macromolecules (cSMMs) blends as a cation selective membrane for fuel cells[J]. Fuel Cells, 2014,14(6):853-861.
doi: 10.1002/fuce.201400044
[14] KUMAR P S, JAYARAMAN S, SINGH G. Rheology and processing of polymer nanocomposites[M]. New Jersey: John Wiley & Sons Inc., 2016: 329-354.
[15] 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018,39(12):145-150.
CHENG Bowen, GAO Lu, SARMAD Bushra, et al. Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration[J]. Journal of Textile Research, 2018,39(12):145-150.
[16] WANG L, ZHU J, ZHENG J, et al. Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains[J]. RSC Advances, 2014,4(48):25195-25200.
doi: 10.1039/c4ra02286f
[17] XIANG Z, ZHAO X, GE J, et al. Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells[J]. Chemical Research in Chinese Universities, 2016,32(2):291-295.
doi: 10.1007/s40242-016-5344-y
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[7] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[11] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[12] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[13] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[14] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[15] 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!