纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 19-26.doi: 10.13475/j.fzxb.20200302108
王利媛1,2, 康卫民1,2, 庄旭品1,2, 鞠敬鸽1,2, 程博闻1,2()
WANG Liyuan1,2, KANG Weimin1,2, ZHUANG Xupin1,2, JU Jingge1,2, CHENG Bowen1,2()
摘要:
为开发燃料电池用高性能全氟磺酸(Nafion)质子交换膜,采用静电纺丝技术制备不同磺化度的磺化聚醚砜(SPES)纳米纤维,将其作为添加剂引入Nafion基体中,制备SPES纳米纤维/Nafion复合质子交换膜。探讨纺丝液浓度、纺丝电压、接收距离对SPES纳米纤维纺丝过程及纤维形貌的影响。在最优纺丝工艺下,着重研究不同磺化度SPES纳米纤维对复合膜微观结构、吸水率、溶胀率、质子传导率及甲醇渗透率等性能的影响。结果表明:在SPES质量分数为30%,纺丝电压为30 kV,接收距离为20 cm条件下制得磺化度为64%的SPES纳米纤维,将其作为添加剂构筑得到复合Nafion质子交换膜,该膜具有平衡的质子传导(0.144 S/cm)与甲醇渗透性(7.58×10-7 cm2/s),综合性能最佳,满足高性能甲醇燃料电池的应用需求。
中图分类号:
[1] | 邢丹敏, 刘永浩, 衣宝廉. 燃料电池用质子交换膜的研究现状[J]. 电池, 2005(4):69-71. |
XING Danmin, LIU Yonghao, YI Baolian. Research status of proton exchange membrane fuel cell[J]. Battery, 2005(4):69-71. | |
[2] |
LIM J W, LEE D, KIM M, et al. Composite structures for proton exchange membrane fuel cells (PEMFC) and energy storage systems (ESS): review[J]. Composite Structures, 2015,134:927-949.
doi: 10.1016/j.compstruct.2015.08.121 |
[3] |
SOOD R, CAVALIERE S, JONES D J, et al. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes[J]. Nano Energy, 2016,26:729-745.
doi: 10.1016/j.nanoen.2016.06.027 |
[4] |
CHAE K J, KIM K Y, CHOI M J, et al. Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells[J]. Chemical Engineering Journal, 2014,254:393-398.
doi: 10.1016/j.cej.2014.05.145 |
[5] |
YUAN Q, FU Z, WANG Y, et al. Coaxial electrospun sulfonated poly(ether ether ketone) proton exchange membrane for conductivity-strength balance[J]. Journal of Membrane Science, 2020,595:117516.
doi: 10.1016/j.memsci.2019.117516 |
[6] |
LEE J R, KIM N Y, LEE M S, et al. SiO2-coated polyimide nonwoven/Nafion composite membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2011,367(1/2):265-272.
doi: 10.1016/j.memsci.2010.11.004 |
[7] | 赵颖会, 顾迎春, 胡斐, 等. 芳香族聚酰胺纳米纤维复合材料研究进展[J]. 纺织学报, 2020,41(1):184-189. |
ZHAO Yinghui, GU Yingchun, HU Fei, et al. Research progress of aromatic polyamide nanofiber composites[J]. Journal of Textile Research, 2020,41(1):184-189. | |
[8] |
WANG S H, LIN H L. Poly(vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells[J]. Journal of Power Sources, 2014,257:254-263.
doi: 10.1016/j.jpowsour.2014.01.104 |
[9] | 王航. 纳米纤维改性 Nafion 复合质子交换膜的制备与性能[D]. 天津:天津工业大学, 2016: 31-42. |
WANG Hang. Preparation and properties of nanofiber modified Nafion composite proton exchange membrane[D]. Tianjin: Tiangong University, 2016: 31-42. | |
[10] |
MATSUMOTO K, HIGASHIHARA T, UEDA M. Locally and densely sulfonated poly(ether sulfone)s as proton exchange membrane[J]. Macromolecules, 2009,42(4):1161-1166.
doi: 10.1021/ma802637w |
[11] |
SHABANI I, HASANI-SADRABADI M M, HADDADI-ASL V, et al. Nanofiber-based polyelectrolytes as novel membranes for fuel cell applications[J]. Journal of Membrane Science, 2011,368(1/2):233-240.
doi: 10.1016/j.memsci.2010.11.048 |
[12] | 王哲, 倪宏哲, 范猛, 等. 磺化聚醚砜质子交换膜材料的合成与性能[J]. 高分子材料科学与工程, 2007,23(3):238-242. |
WANG Zhe, NI Hongzhe, FAN Meng, et al. Synjournal and properties of sulfonated polyethersulfone proton exchange membrane materials[J]. Polymer Materials Science & Engineering, 2007,23(3):238-242. | |
[13] |
MUTHUMEENAL A, NEELAKANDAN S, RANA D, et al. Sulfonated polyethersulfone (SPES)-charged surface modifying macromolecules (cSMMs) blends as a cation selective membrane for fuel cells[J]. Fuel Cells, 2014,14(6):853-861.
doi: 10.1002/fuce.201400044 |
[14] | KUMAR P S, JAYARAMAN S, SINGH G. Rheology and processing of polymer nanocomposites[M]. New Jersey: John Wiley & Sons Inc., 2016: 329-354. |
[15] | 程博闻, 高鲁, SARMAD Bushra, 等. 静电纺树枝状聚乳酸纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2018,39(12):145-150. |
CHENG Bowen, GAO Lu, SARMAD Bushra, et al. Fabrication of polylactic acid tree-like nanofiber membrane and its application in filtration[J]. Journal of Textile Research, 2018,39(12):145-150. | |
[16] |
WANG L, ZHU J, ZHENG J, et al. Nanofiber mats electrospun from composite proton exchange membranes prepared from poly(aryl ether sulfone)s with pendant sulfonated aliphatic side chains[J]. RSC Advances, 2014,4(48):25195-25200.
doi: 10.1039/c4ra02286f |
[17] |
XIANG Z, ZHAO X, GE J, et al. Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells[J]. Chemical Research in Chinese Universities, 2016,32(2):291-295.
doi: 10.1007/s40242-016-5344-y |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[3] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[4] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[5] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[11] | 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177. |
[12] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[13] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[14] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[15] | 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144. |
|