纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 34-40.doi: 10.13475/j.fzxb.20200307207

• 纤维材料 • 上一篇    下一篇

纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征

马跃1, 郭静1,2(), 殷聚辉1, 赵秒1,2, 宫玉梅1,2   

  1. 1.大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2.辽宁省功能纤维及复合材料工程技术中心, 辽宁 大连 116034
  • 收稿日期:2020-03-27 修回日期:2020-08-15 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 郭静
  • 作者简介:马跃(1994—),女,硕士生。主要研究方向为高分子材料加工与改性。
  • 基金资助:
    国家自然科学基金项目(51773024,51373027);辽宁省教育厅科学研究项目(J2020046)

Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers

MA Yue1, GUO Jing1,2(), YIN Juhui1, ZHAO Miao1,2, GONG Yumei1,2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Functional Fiber and Composite Materials Engineering Technology Research Center in Liaoning Province, Dalian, Liaoning 116034, China
  • Received:2020-03-27 Revised:2020-08-15 Online:2020-11-15 Published:2020-11-26
  • Contact: GUO Jing

摘要:

为改善纤维素/磷虾蛋白(C/AKP)复合纤维的可降解性和抗菌性,在原液中加入氧化纤维素(DAC)制备C/DAC/AKP纺丝原液,采用湿法纺丝技术分别在H2SO4/Na2SO4/ZnSO4和H2SO4/Na2SO4/KAl(SO4)2凝固浴中凝固后制得复合纤维,研究了DAC及凝固浴组分对纤维分子间作用、体外降解、抑菌以及热稳定等结构和性能的影响。结果表明:在相同的凝固浴中,相比于C/AKP复合纤维,C/DAC/AKP复合纤维体系内分子间氢键含量从24.26%增加至32.96%,热稳定性提高7.5%,降解性也有所改善;凝固浴中KAl(SO4)2的加入会提高纤维的分子间氢键以及热稳定性,同时C/AKP和C/DAC/AKP复合纤维均具有良好的抗菌效果,在生物材料方面具有良好的应用前景。

关键词: 纤维素, 南极磷虾蛋白, 氧化纤维素, 湿法纺丝, 抗菌性, 抗菌纤维

Abstract:

In order to improve the degradability and antibacterial properties of cellulose/krill protein (C/AKP) composite fibers, C/DAC/AKP spinning solutions were prepared by adding dialdehyde cellulose (DAC) into the C/AKP solution. Fibers were produced from the C/DAC/AKP spinning solution using wet spinning technology, which was coagulated in H2SO4/Na2SO4/ZnSO4 and H2SO4/Na2SO4/KAl(SO4)2 coagulation bath. The effects of DAC and coagulation bath components on the structures and properties of the fibers, such as intermolecular action, in vitro degradation, bacteriostasis and thermal stability, were investigated. The results show that using the same coagulation bath, the C/DAC/AKP composite fibers, demonstrate an increase of 24.26% to 32.96% in intermolecular hydrogen bonds in the system and a 7.5% increase in thermal stability compared to that for the C/AKP composite fibers, together with improved degradability. It is also made clear that the addition of KAl(SO4)2 in the coagulation bath improves the intermolecular hydrogen bond content and thermal stability of the fibers. It is illustrated that both C/AKP and C/DAC/AKP composite fibers have good antibacterial activity, and have good application prospects for biomaterials.

Key words: cellulose, Antarctic krill protein, dialdehyde cellulose, wet spinning, antibacterial property, antibacterial fiber

中图分类号: 

  • TQ340.41

图1

C、DAC、AKP和DAC/AKP的红外光谱图"

图2

C/DAC/AKP和C/AKP复合纤维的红外光谱图"

表1

不同凝固浴制备的C/DAC/AKP和C/AKP复合纤维氢键拟合结果"

纤维编号 氢键类型 键名 波数/cm-1 平均峰面积 氢键比例/% 总氢键比例/%
C/DAC/AKP-1 自由羟基 —OH 3 633 3.26 3.76 3.76
分子内氢键 OH…OH 3 442 53.83 62.06 63.27
多聚体 3 113 1.05 1.21
分子间氢键 OH…π 3 569 10.48 12.08 32.96
OH…醚O 3 245 17.85 20.58
OH…N 3 061 0.26 0.30
C/DAC/AKP-2 自由羟基 —OH 3 614 4.30 5.97 5.97
分子内氢键 OH…OH 3 432 43.08 59.73 61.03
多聚体 3 118 0.94 1.30
分子间氢键 OH…π 3 545 11.02 15.28 33.00
OH…醚O 3 247 12.55 17.40
OH…N 3 063 0.23 0.32
C/AKP-1 自由羟基 —OH 3 643 0.98 1.19 1.19
分子内氢键 OH…OH 3 437 58.99 71.55 74.55
多聚体 3 125 2.47 3.00
分子间氢键 OH…π 3 578 9.39 11.39 24.26
OH…醚O 3 237 10.19 12.37
OH…N 3 061 0.41 0.50
C/AKP-2 自由羟基 —OH 3 635 2.06 2.58 2.58
分子内氢键 OH…OH 3 442 51.92 65.06 66.57
多聚体 3 110 1.24 1.51
分子间氢键 OH…π 3 576 8.69 10.89 30.85
OH…醚O 3 238 15.63 19.59
OH…N 3 056 0.29 0.37

图3

C/DAC/AKP和C/AKP复合纤维的热稳定性曲线"

图4

C/DAC/AKP和C/AKP复合纤维的表面形貌(×200)"

图5

C/DAC/AKP及C/AKP复合纤维的降解率"

图6

C/DAC/AKP及C/AKP复合纤维的结晶曲线"

图7

C/DAC/AKP和C/AKP复合纤维的抗菌效果图"

图8

C/DAC/AKP复合纤维的EDS能谱图"

图9

C/AKP复合纤维的EDS能谱"

[1] SIRVIÖ J. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent[J]. Journal of Materials Chemistry A, 2019,7(2):755-763.
doi: 10.1039/C8TA09959F
[2] PUSPASARI T, AKHTAR F H, OGIEGLO W, et al. High dehumidification performance of amorphous cellulose composite membranes prepared from trimethylsilyl cellulose[J]. Journal of Materials Chemistry A, 2018,6(19):9271-9279.
doi: 10.1039/C8TA00350E
[3] BABAEE M, JONOOBI M, HAMZEH Y, et al. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers[J]. Carbohydrate Polymers, 2015,132:1-8.
doi: 10.1016/j.carbpol.2015.06.043 pmid: 26256317
[4] KANNAM S K, OEHME D, DOBLIN M, et al. Hydrogen bonds and twist in cellulose microfibrils[J]. Carbohydrate Polymers, 2017,175:433-739.
doi: 10.1016/j.carbpol.2017.07.083 pmid: 28917886
[5] UTO T, YAMAMOTO K, KADOKAWA J I. Cellulose crystal dissolution in imidazolium-based ionic liquids: a theoretical study[J]. The Journal of Physical Chemistry B, 2018,122(1):258-266.
doi: 10.1021/acs.jpcb.7b09525 pmid: 29264920
[6] LINDMAN B, MEDRONHO B, ALVES L, et al. The relevance of structural features of cellulose and its interactions to dissolution, regeneration, gelation and plasticization phenomena[J]. Physical Chemistry Chemical Physics, 2017,19(35):23704-23718.
doi: 10.1039/c7cp02409f pmid: 28621781
[7] NIWANTHI D, VIDURA D T, SHELBY T, et al. Substituent effects on cellulose dissolution in imidazolium-based ionic liquids[J]. Cellulose, 2018,25:6887-6900.
doi: 10.1007/s10570-018-2055-1
[8] CAO J, WEI W, GOU G J, et al. Cellulose films from the aqueous DMSO/TBAH-system[J]. Cellulose, 2018,25(12):1-12.
doi: 10.1007/s10570-017-1536-y
[9] CHENG G, ZHU P X, LI J L, et al. All-cellulose films with excellent strength and toughness via a facile approach of dissolution-regeneration[J]. Journal of Applied Polymer Science, 2018,136(2):46925-46936.
doi: 10.1002/app.v136.2
[10] WANG S, LYU K J, SUN P, et al. Influence of cation on the cellulose dissolution investigated by MD simulation and experiments[J]. Cellulose, 2017,24(11):1-11.
doi: 10.1007/s10570-016-1105-9
[11] 马博谋, 侯秀良, 曹秀明, 等. 一浴法角蛋白/纤维素复合膜制备与性能研究[J]. 材料导报, 2018,32(S1):261-264.
MA Bomou, HOU Xiuliang, CAO Xiuming, et al. Fabrication and properties of the keratin/cellulose composite membranes in one-pot[J]. Materials Review, 2018,32(S1):261-264.
[12] SILVA N H C S, VILELA C, MARRUCHO I M, et al. Protein-based materials: from sources to innovative sustainable materials for biomedical applications[J]. Journal of Materials Chemistry B, 2014,2(24):3715-3740.
doi: 10.1039/c4tb00168k
[13] 全沁果, 段伟文, 曾雪鸽, 等. 南极磷虾粉成分分析及营养学评价[J]. 食品与机械, 2018,34(9):68-76.
QUAN Qinguo, DUAN Weiwen, ZENG Xuege, et al. Analysis and nutritional evaluation of Antarctic krill powder[J]. Food & Machinery, 2018,34(9):68-76.
[14] BAX M L, AUBRY L, FERREIRA C, et al. Cooking temperature is a key determinant of in vitro meat protein digestion rate: investigation of underlying mechani-sms[J]. Journal of Agricultural & Food Chemistry, 2012,60(10):2569-2576.
doi: 10.1021/jf205280y pmid: 22335241
[15] 郭静, 李学才, 于春芳, 等. 南极磷虾蛋白的提取及其复合纤维的性能[J]. 大连工业大学学报, 2014,33(4):270-273.
GUO Jing, LI Xuecai, YU Chunfang, et al. Extraction of Antarctic krill protein and properties of its composite fibers[J]. Journal of Dalian Polytechnic University, 2014,33(4):270-273.
[16] YANG L J, GUO J, YU Y, et al. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material[J]. Carbohydrate Polymers, 2016,142:275-281.
doi: 10.1016/j.carbpol.2016.01.050 pmid: 26917400
[17] ZHANG R, GUO J, LIU Y F, et al. Effects of sodium salt types on the intermolecular interaction of sodium alginate/Antarctic krill protein composite fibers[J]. Carbohydrate Polymers, 2018,189:72-78.
doi: 10.1016/j.carbpol.2018.02.013 pmid: 29580428
[18] CHEN J, GUO J, ZHAO M, et al. Hydrogen bonding in chitosan/Antarctic krill protein composite system: study on construction and enhancement mechanism[J]. International Journal of Biological Macromolecules, 2020. DOI: 10.1016/j.ijbiomac.2019.09.123.
doi: 10.1016/j.ijbiomac.2021.01.128 pmid: 33485889
[19] SONG J X, GUO J, ZHANG S, et al. Properties of cellulose/Antarctic krill protein composite fibers prepared in different coagulation baths[J]. International Journal of Biological Macromolecules, 2018,114:334-340.
doi: 10.1016/j.ijbiomac.2018.03.118 pmid: 29578013
[20] QI R R, GUO J, LIU Y F, et al. Effects of salt content on secondary structure of protein in sodium alginate/Antarctic krill protein composite system and characterization of fiber properties[J]. Dyes and Pigments, 2019,171:107686-107693.
doi: 10.1016/j.dyepig.2019.107686
[21] KIM U J, KIMURA S, WADA M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam[J]. Carbohydrate Polymers, 2019,214:294-302.
doi: 10.1016/j.carbpol.2019.03.058 pmid: 30926000
[22] YAO M J, WANG Z, LIU Y, et al. Preparation of dialdehyde cellulose graftead graphene oxide composite and its adsorption behavior for heavy metals from aqueous solution[J]. Carbohydrate Polymers, 2019,212:345-351.
doi: 10.1016/j.carbpol.2019.02.052 pmid: 30832866
[23] 吴静, 郭静, 杨利军, 等. 海藻酸钠/南极磷虾蛋白/聚乙烯醇复合纤维的分子作用及其性能表征[J]. 纺织学报, 2017,38(2):7-13.
WU Jing, GUO Jing, YANG Lijun, et al. Molecular interaction and characterization of sodium alginate/Antarctic krill protein/polyvinyl alcohol composite fiber[J]. Journal of Textile Research, 2017,38(2):7-13.
[24] GEORGE D, MAHESWARI P U, BEGUM K M M S, et al. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity[J]. Journal of Agricultural and Food Chemistry, 2019,67(39):10880-10890.
doi: 10.1021/acs.jafc.9b01933 pmid: 31508956
[25] LI D F, YE Y X, LI D R, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin-PEG composite hydrogel fibers for wound dressings[J]. Carbohydrate Polymers, 2015,137:508-514.
doi: 10.1016/j.carbpol.2015.11.024 pmid: 26686157
[26] KUBO S, KADLA J F. Hydrogen bonding in lignin: a fourier transform infrared model compound study[J]. Biomacromolecules, 2005,6(5):2815-2821.
doi: 10.1021/bm050288q pmid: 16153123
[27] WANG Z Q, YANG H W, ZHU Z. Study on the blends of silk fibroin and sodium alginate: hydrogen bond formation, structure and properties[J]. Polymer, 2019,163:144-153.
doi: 10.1016/j.polymer.2019.01.004
[28] HE N F, SHAN W T, WANG J L, et al. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A, 2019(7):6869-6876.
[29] 梅昕, 马凤森, 喻炎, 等. 高分子可降解生物材料的降解研究进展[J]. 材料导报, 2016,30(S1):298-303.
MEI Xin, MA Fengsen, YU Yan, et al. Review on the degradation of biodegradable polymer materials[J]. Materials Review, 2016,30(S1):298-303.
[30] 陈海波, 方丽, 喻炎, 等. 氧化再生纤维素止血产品的体外降解研究[J]. 中国医疗器械志, 2018,42(5):380-383.
pmid: 30358358
CHEN Haibo, FANG Li, YU Yan, et al. Study on in vitro degradation of oxidized regenerated cellulose absorbable hemostatic products[J]. Chinese Journal of Medical Instrumentation, 2018,42(5):380-383.
doi: 10.3969/j.issn.1671-7104.2018.05.020 pmid: 30358358
[31] 邱莹, 于腾. 20种中药及其复方抗真菌实验研究[J]. 济宁医学院学报, 2007,30(3):237-238.
QIU Ying, YU Teng. Experimental study on 20 kinds of chinese medicine and its compound antifungal[J]. Journal of Jining Medical College, 2007,30(3):237-238.
[32] 高晓杰, 许安, 郭竑宇, 等. 石榴皮提取物对棉织物的抗菌整理研究[J]. 上海纺织科技, 2016,44(8):21-26.
GAO Xiaojie, XU An, GUO Hongyu, et al. Antibacterial finish of cotton fabric with pericarpium granati extracts[J]. Shanghai Textile Science & Technology, 2016,44(8):21-26.
[1] 黎俊妤 蒋培清 张文奇 李文斌. 原子层沉积技术对纤维素膜功能化的影响[J]. 纺织学报, 2020, 41(12): 26-30.
[2] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[3] 刘芳, 马颜雪, 陈小光, 刘书惠, 张益榛, 任志鹏, 李康琪, 童艺翾, 任泺彤, 李毓陵. 苎麻纤维厌氧生物脱胶系统工艺性能研究[J]. 纺织学报, 2020, 41(11): 89-94.
[4] 屈永帅, 施朝禾, 张瑞云, 赵树元, 刘柳. 蒽醌助剂对乙二醇溶剂脱胶苎麻纤维性能的影响[J]. 纺织学报, 2020, 41(11): 81-88.
[5] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[6] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[7] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[8] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[9] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[10] 元伟, 姚勇波, 张玉梅, 王华平. 制备Lyocell纤维用纤维素浆粕的碱性酶处理工艺[J]. 纺织学报, 2020, 41(07): 1-8.
[11] 刘思佳, 喻倩, 王锐, 孔宪明. 再生纤维素纤维-纳米金柔性复合物的制备及其对尼尔兰的快速检测[J]. 纺织学报, 2020, 41(07): 23-28.
[12] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[13] 王婷婷, 刘梁, 曹秀明, 王清清. 竹红菌素-聚( 甲基丙烯酸甲酯-co-甲基丙烯酸)纳米纤维的制备及其光敏抗菌性能[J]. 纺织学报, 2020, 41(05): 1-7.
[14] 刘艳春, 白刚. 小檗碱在聚丙烯腈/ 醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[15] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!