纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 41-47.doi: 10.13475/j.fzxb.20200301007
王曙东1,2,3, 马倩1, 王可1,4, 瞿才新1(), 戚玉2
WANG Shudong1,2,3, MA Qian1, WANG Ke1,4, QU Caixin1(), QI Yu2
摘要:
针对蚕丝蛋白水凝胶不易快速凝胶成型的问题,将明胶蛋白水溶液与蚕丝蛋白以一定质量比复合,通过挤出式3D打印设备制备得到蚕丝蛋白/明胶复合水凝胶,并对复合水凝胶的流变性能、微观结构和生物相容性进行分析。结果表明:明胶的添加提高了复合水凝胶的黏度和储能模量,有利于3D打印过程中蚕丝蛋白的快速凝胶成型;明胶的添加未对蚕丝蛋白的二级结构产生影响,通过3D打印法可制备具有微周期格栅状蚕丝蛋白/明胶复合水凝胶支架,该支架具有三维多孔结构;当蚕丝蛋白与明胶质量比为50∶50时,复合水凝胶支架的断裂强度达3.43 MPa,是纯蚕丝蛋白的3.9倍;培养7 d后,MC3T3-E1细胞可在复合水凝胶支架上生长、增殖和分化。
中图分类号:
[1] |
MACNEIL S. Progress and opportunities for tissue-engineered skin[J]. Nature, 2007,445:874-880.
doi: 10.1038/nature05664 pmid: 17314974 |
[2] | YANG S, LEONG K, DU Z, et al. The design of scaffolds for use in tissue engineering: part I: traditional factors[J]. Tissue Engineering, 2001,7(6):679-689. |
[3] | OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010,329:528-531. |
[4] | 陈宏武, 王曙东. 蚕丝蛋白水凝胶的研究现状[J]. 纺织学报, 2015,36(11):156-163. |
CHEN Hongwu, WANG Shudong. Research progress of silk fibroin hydrogels[J]. Journal of Textile Research, 2015,36(11):156-163. | |
[5] | HOLLAND C, NUMATA K, RNJAK-KOVACINA J, et al. The biomedical use of silk: past, present, future[J]. Advanced Healthcare Materials, 2019,8:1800465. |
[6] | MATAI I, KAUR G, SEYEDSALEHI A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomterials, 2020,226:119536. |
[7] |
SINGH M, JONNALAGADDA S. Advances in bioprinting using additive manufacturing[J]. European Journal of Pharmaceutical Sciences, 2020,143:105167.
doi: 10.1016/j.ejps.2019.105167 pmid: 31778785 |
[8] |
DERAKHSHANFAR S, MBELECK R, XU K, et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances[J]. Bioactive Materials, 2018,3:144-156.
doi: 10.1016/j.bioactmat.2017.11.008 pmid: 29744452 |
[9] | SKANDER L, PAUL C, JOO K H, et al. Differentiation of bone marrow stem cell on injet printed silk lines[J]. Materials Research Society Symposia Proceedings, 2007,950(4):1-4. |
[10] | GHOSH S, PARKER S T, WANG X, et al. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008,18:1883-1889. |
[11] | WANG S D, ZHANG K Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin[J]. Materials Letters, 2016,169:5-9. |
[12] |
LIU X, ZHENG C, LUO X, et al. Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications[J]. Materials Science & Engineering C, 2019,99:1509-1522.
pmid: 30889687 |
[13] | YANG Y, WANG H, YAN F Y, et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposi-tion[J]. ACS Applied Surface & Materials, 2015,7:5634-5642. |
[14] | WANG K, MA Q, ZHANG Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage[J]. Cellulose, 2020,27:1845-1852. |
[15] | LI F, HE J L, ZHANG M Z, et al. Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and alpha-cyclodextrin for pH-triggered drug delivery[J]. RSC Advances, 2015,5(67):54658-54666. |
[16] |
WANG S D, MA Q, WANG K, et al. Strong and biocompatibile three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separa-tion[J]. International Journal of Biological Macromolecules, 2018,111:237-246.
doi: 10.1016/j.ijbiomac.2018.01.021 pmid: 29320721 |
[17] |
WANG S D, MA Q, WANG K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide[J]. ACS Omega, 2018,3:406-413.
doi: 10.1021/acsomega.7b01210 pmid: 30023780 |
[18] |
HUANG L, DU X, FAN S, et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores[J]. Carbohydrate Polymers, 2019,221:146-156.
pmid: 31227153 |
[19] | 刘永成, 邵正中, 孙玉宇, 等. 蚕丝蛋白的结构与功能[J]. 高分子通报, 1998(3):17-23. |
LIU Yongcheng, SHAO Zhengzhong, SUN Yuyu, et al. The structure and function of silk fibroin[J]. Polymer Bulletin, 1998(3):17-23. | |
[20] | OHGO K, ZHAO C H, KOBAYASHI M, et al. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method[J]. Polymer, 2003,44:841-846. |
[21] | 鲍韦华韦华, 王曙东, 张幼珠, 等. 静电纺再生丝素/明胶纳米纤维的结构与性能[J]. 纺织学报, 2008,29(3):1-4. |
BAO Weiwei, WANG Shudong, ZHANG Youzhu, et al. Microstructure and property of electrospun regenerated silk fibroin/gelatin nanofibers[J]. Journal of Textile Research, 2008,29(3):1-4. | |
[22] | ZHANG Q, LI M Z, XU W L, et al. A novel silk fibroin scaffolds with oriented multichannels[J]. Materials Letters, 2013,105:8-11. |
[23] | 王曙东, 张幼珠, 王红卫, 等. 静电纺丝素-明胶管状支架的结构与性能[J]. 丝绸, 2009,46(7):18-21. |
WANG Shudong, ZHANG Youzhu, WANG Hongwei, et al. Structure and properties of electrospun silk fibroin-gelatin tubular scaffold[J]. Journal of Silk, 2009,46(7):18-21. |
[1] | 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77. |
[2] | 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190. |
[3] | 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19. |
[4] | 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62. |
[5] | 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38. |
[6] | 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102. |
[7] | 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18. |
[8] | 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176. |
[9] | 秦益民. 海藻酸盐纤维的生物活性和应用功效[J]. 纺织学报, 2018, 39(04): 175-180. |
[10] | 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18. |
[11] | 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017, 38(05): 14-18. |
[12] | 王利君 熊杰 骆菁菁 赵兴艳 赵新飞. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(05): 8-13. |
[13] | 秦益民. 生物活性纤维的研发现状和发展趋势[J]. 纺织学报, 2017, 38(03): 174-180. |
[14] | 邱海飞. 3D打印技术在织机打纬−开口机构中的应用[J]. 纺织学报, 2017, 38(01): 140-146. |
[15] | 贾琳 王西贤 张海霞 覃小红. 聚乳酸/胶原蛋白取向纳米纤维支架的性能[J]. 纺织学报, 2016, 37(11): 8-13. |
|