纺织学报 ›› 2020, Vol. 41 ›› Issue (11): 41-47.doi: 10.13475/j.fzxb.20200301007

• 纤维材料 • 上一篇    下一篇

蚕丝蛋白/明胶复合水凝胶的结构与生物相容性

王曙东1,2,3, 马倩1, 王可1,4, 瞿才新1(), 戚玉2   

  1. 1.盐城工业职业技术学院 纺织服装学院, 江苏 盐城 224005
    2.苏州大学 纺织与服装工程学院, 江苏 苏州 215002
    3.江苏金麦穗新能源科技股份有限公司, 江苏 盐城 224005
    4.青岛大学 纺织服装学院, 山东 青岛 262127
  • 收稿日期:2020-03-04 修回日期:2020-08-12 出版日期:2020-11-15 发布日期:2020-11-26
  • 通讯作者: 瞿才新
  • 作者简介:王曙东(1983—),男,副教授,博士。主要研究方向为生物医用材料。
  • 基金资助:
    江苏省自然科学基金面上项目(SBK2020020632);江苏高校青蓝工程培养对象项目(苏教师2018 No.12);江苏高校青蓝工程培养对象项目(苏教师2019 No.3);江苏省高校自然科学基金面上项目(18KJB540005);江苏省高校自然科学基金面上项目(19KJD54000);国家留学基金委资助项目(201908370222)

Structure and biocompatibility of silk fibroin/gelatin blended hydrogels

WANG Shudong1,2,3, MA Qian1, WANG Ke1,4, QU Caixin1(), QI Yu2   

  1. 1. School of Textile and Clothing, Yancheng Polytechnic College, Yancheng, Jiangsu 224005, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215002, China
    3. Jiangsu Jinmaisui New Energy Technology Co., Ltd., Yancheng, Jiangsu 224005, China
    4. College of Textile and Clothing, Qingdao University, Qingdao, Shandong 262127, China
  • Received:2020-03-04 Revised:2020-08-12 Online:2020-11-15 Published:2020-11-26
  • Contact: QU Caixin

摘要:

针对蚕丝蛋白水凝胶不易快速凝胶成型的问题,将明胶蛋白水溶液与蚕丝蛋白以一定质量比复合,通过挤出式3D打印设备制备得到蚕丝蛋白/明胶复合水凝胶,并对复合水凝胶的流变性能、微观结构和生物相容性进行分析。结果表明:明胶的添加提高了复合水凝胶的黏度和储能模量,有利于3D打印过程中蚕丝蛋白的快速凝胶成型;明胶的添加未对蚕丝蛋白的二级结构产生影响,通过3D打印法可制备具有微周期格栅状蚕丝蛋白/明胶复合水凝胶支架,该支架具有三维多孔结构;当蚕丝蛋白与明胶质量比为50∶50时,复合水凝胶支架的断裂强度达3.43 MPa,是纯蚕丝蛋白的3.9倍;培养7 d后,MC3T3-E1细胞可在复合水凝胶支架上生长、增殖和分化。

关键词: 蚕丝蛋白, 明胶, 复合水凝胶, 3D打印, 生物相容性, 支架材料, 生物医用材料

Abstract:

To address the difficulty in silk fibroin curing, gelatin and silk fibroin aqueous solution were blended, and the silk fibroin/gelatin blended hydrogels were prepared by three-dimensional printing. The rheological properties, microstructure and biological properties of the blended hydrogels were investigated. The results show that addition of gelatin increases the viscosity and energy storage modulus of blended hydrogels, which is good for the gel forming in the subsequent three-dimensional printing process. Addition of gelatin does not affect the secondary structure of silk fibroin, and the microperiodic silk fibroin/gelatin blended hydrogels were prepared by three-dimensional printing. The breaking strength of the blended scaffold (blending ratio of silk protein to gelatin was 50∶50) is 3.43 MPa, which is 3.9 times higher than that of the pure silk protein. The printed scaffold has a three-dimensional porous structure after freeze-drying. After 7 days' culturing, MC3T3-E1 cells were found to be able to grow, proliferate and differentiate on the blended hydrogel scaffolds.

Key words: silk fibroin, gelatin, composite hydrogel, three-dimensional printing, biocompatibility, scaffold material, biomedical material

中图分类号: 

  • TS102.512

图1

不同质量比的蚕丝蛋白/明胶复合水凝胶的外观形貌和流变性能"

图2

不同质量比的蚕丝蛋白/明胶复合水凝胶的储能模量和损耗模量"

图3

蚕丝蛋白/明胶复合水凝胶的力学性能"

图4

蚕丝蛋白/明胶复合水凝胶的微观结构图"

图5

不同质量比的蚕丝蛋白/明胶复合水凝胶支架形貌"

图6

不同质量比的蚕丝蛋白/明胶复合水凝胶冻干后支架形貌"

图7

不同质量比的蚕丝蛋白/明胶复合水凝胶冻干支架SEM照片(×100)"

表1

MC3T3-E1细胞在蚕丝蛋白及蚕丝蛋白/明胶复合水凝胶支架上的增殖情况"

培养时间/d 吸光度
蚕丝蛋白支架 蚕丝蛋白/明胶
复合水凝胶支架
1 0.130±0.027 0.153±0.014
3 0.172±0.031 0.246±0.009
7 0.250±0.019 0.336±0.013

图8

MC3T3-E1细胞在蚕丝蛋白及蚕丝蛋白/明胶复合水凝胶支架上培养7 d后的扫描电镜照片(×200)"

[1] MACNEIL S. Progress and opportunities for tissue-engineered skin[J]. Nature, 2007,445:874-880.
doi: 10.1038/nature05664 pmid: 17314974
[2] YANG S, LEONG K, DU Z, et al. The design of scaffolds for use in tissue engineering: part I: traditional factors[J]. Tissue Engineering, 2001,7(6):679-689.
[3] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010,329:528-531.
[4] 陈宏武, 王曙东. 蚕丝蛋白水凝胶的研究现状[J]. 纺织学报, 2015,36(11):156-163.
CHEN Hongwu, WANG Shudong. Research progress of silk fibroin hydrogels[J]. Journal of Textile Research, 2015,36(11):156-163.
[5] HOLLAND C, NUMATA K, RNJAK-KOVACINA J, et al. The biomedical use of silk: past, present, future[J]. Advanced Healthcare Materials, 2019,8:1800465.
[6] MATAI I, KAUR G, SEYEDSALEHI A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering[J]. Biomterials, 2020,226:119536.
[7] SINGH M, JONNALAGADDA S. Advances in bioprinting using additive manufacturing[J]. European Journal of Pharmaceutical Sciences, 2020,143:105167.
doi: 10.1016/j.ejps.2019.105167 pmid: 31778785
[8] DERAKHSHANFAR S, MBELECK R, XU K, et al. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances[J]. Bioactive Materials, 2018,3:144-156.
doi: 10.1016/j.bioactmat.2017.11.008 pmid: 29744452
[9] SKANDER L, PAUL C, JOO K H, et al. Differentiation of bone marrow stem cell on injet printed silk lines[J]. Materials Research Society Symposia Proceedings, 2007,950(4):1-4.
[10] GHOSH S, PARKER S T, WANG X, et al. Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008,18:1883-1889.
[11] WANG S D, ZHANG K Q. Electrogelation and rapid prototyping of Bombyx mori silk fibroin[J]. Materials Letters, 2016,169:5-9.
[12] LIU X, ZHENG C, LUO X, et al. Recent advances of collagen-based biomaterials: multi-hierarchical structure, modification and biomedical applications[J]. Materials Science & Engineering C, 2019,99:1509-1522.
pmid: 30889687
[13] YANG Y, WANG H, YAN F Y, et al. Bioinspired porous octacalcium phosphate/silk fibroin composite coating materials prepared by electrochemical deposi-tion[J]. ACS Applied Surface & Materials, 2015,7:5634-5642.
[14] WANG K, MA Q, ZHANG Y M, et al. Preparation of bacterial cellulose/silk fibroin double-network hydrogel with high mechanical strength and biocompatibility for artificial cartilage[J]. Cellulose, 2020,27:1845-1852.
[15] LI F, HE J L, ZHANG M Z, et al. Injectable supramolecular hydrogels fabricated from PEGylated doxorubicin prodrug and alpha-cyclodextrin for pH-triggered drug delivery[J]. RSC Advances, 2015,5(67):54658-54666.
[16] WANG S D, MA Q, WANG K, et al. Strong and biocompatibile three-dimensional porous silk fibroin/graphene oxide scaffold prepared by phase separa-tion[J]. International Journal of Biological Macromolecules, 2018,111:237-246.
doi: 10.1016/j.ijbiomac.2018.01.021 pmid: 29320721
[17] WANG S D, MA Q, WANG K, et al. Improving antibacterial activity and biocompatibility of bioinspired electrospinning silk fibroin nanofibers modified by graphene oxide[J]. ACS Omega, 2018,3:406-413.
doi: 10.1021/acsomega.7b01210 pmid: 30023780
[18] HUANG L, DU X, FAN S, et al. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores[J]. Carbohydrate Polymers, 2019,221:146-156.
pmid: 31227153
[19] 刘永成, 邵正中, 孙玉宇, 等. 蚕丝蛋白的结构与功能[J]. 高分子通报, 1998(3):17-23.
LIU Yongcheng, SHAO Zhengzhong, SUN Yuyu, et al. The structure and function of silk fibroin[J]. Polymer Bulletin, 1998(3):17-23.
[20] OHGO K, ZHAO C H, KOBAYASHI M, et al. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method[J]. Polymer, 2003,44:841-846.
[21] 鲍韦华韦华, 王曙东, 张幼珠, 等. 静电纺再生丝素/明胶纳米纤维的结构与性能[J]. 纺织学报, 2008,29(3):1-4.
BAO Weiwei, WANG Shudong, ZHANG Youzhu, et al. Microstructure and property of electrospun regenerated silk fibroin/gelatin nanofibers[J]. Journal of Textile Research, 2008,29(3):1-4.
[22] ZHANG Q, LI M Z, XU W L, et al. A novel silk fibroin scaffolds with oriented multichannels[J]. Materials Letters, 2013,105:8-11.
[23] 王曙东, 张幼珠, 王红卫, 等. 静电纺丝素-明胶管状支架的结构与性能[J]. 丝绸, 2009,46(7):18-21.
WANG Shudong, ZHANG Youzhu, WANG Hongwei, et al. Structure and properties of electrospun silk fibroin-gelatin tubular scaffold[J]. Journal of Silk, 2009,46(7):18-21.
[1] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[2] 秦益民. 含银海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2020, 41(09): 183-190.
[3] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/ 海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[4] 董科, 李思明, 吴官正, 黄虹蓉, 林钟石, 肖学良. 碳纤维/ 涤纶刺绣心电电极制备及其性能 [J]. 纺织学报, 2020, 41(01): 56-62.
[5] 张晓会, 杨曈, 马丕波. 基于3D打印的竹节结构中空单丝制备及其压缩性能[J]. 纺织学报, 2019, 40(12): 32-38.
[6] 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102.
[7] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[8] 秦益民. 壳聚糖纤维的理化性能和生物活性研究进展[J]. 纺织学报, 2019, 40(05): 170-176.
[9] 秦益民. 海藻酸盐纤维的生物活性和应用功效[J]. 纺织学报, 2018, 39(04): 175-180.
[10] 蔡冯杰 祝成炎 田伟 吕智宁 申晓. 3D打印成型的玻璃纤维增强聚乳酸基复合材料[J]. 纺织学报, 2017, 38(10): 13-18.
[11] 吴焕岭. 载药再生细菌纤维素纤维的制备及其表征[J]. 纺织学报, 2017, 38(05): 14-18.
[12] 王利君 熊杰 骆菁菁 赵兴艳 赵新飞. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能[J]. 纺织学报, 2017, 38(05): 8-13.
[13] 秦益民. 生物活性纤维的研发现状和发展趋势[J]. 纺织学报, 2017, 38(03): 174-180.
[14] 邱海飞. 3D打印技术在织机打纬−开口机构中的应用[J]. 纺织学报, 2017, 38(01): 140-146.
[15] 贾琳 王西贤 张海霞 覃小红. 聚乳酸/胶原蛋白取向纳米纤维支架的性能[J]. 纺织学报, 2016, 37(11): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!