纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 13-20.doi: 10.13475/j.fzxb.20200402308

• 纤维材料 • 上一篇    下一篇

聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能

张亦可, 贾凡, 桂澄, 晋蕊, 李戎()   

  1. 东华大学 化学化工与生物工程学院, 上海 201620
  • 收稿日期:2020-04-09 修回日期:2020-08-18 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 李戎
  • 作者简介:张亦可(1996—),女,硕士生。主要研究方向为功能材料制备及表征。

Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes

ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong()   

  1. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2020-04-09 Revised:2020-08-18 Online:2020-12-15 Published:2020-12-23
  • Contact: LI Rong

摘要:

为制备灵敏度高的柔性传感器,将六水合三氯化铁(FeCl3·6H2O)加入聚偏氟乙烯(PVDF)中,采用静电纺丝法制备PVDF/FeCl3复合纤维膜并组装成传感器。借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、接触角分析仪等对纤维膜的形貌、结构、润湿性、力学性能及压电性能进行表征。结果表明:适量的FeCl3·6H2O 添加可增加纤维膜中β晶型的相对含量,进而有效提高传感器的压电输出性能,但过多FeCl3·6H2O会抑制β晶型的形成;当FeCl3·6H2O质量分数为0.5%时,纤维晶体结构中β晶型的比例达到最大值68.74%,最高输出电压达到约5 V;传感器对激振过程的反应时间可达0.025 s,且在不同激振频率下的响应时间基本一致,动态高频时具有较高的压电输出。

关键词: 聚偏氟乙烯, 六水合三氯化铁, 柔性传感器, 压电性, 静电纺丝

Abstract:

In order to prepare a portable flexible sensor with high sensitivity, iron (III) chloride hexahydrate(FeCl3·6H2O)was added to polyvinylidene fluoride(PVDF) to prepare PVDF/FeCl3 composite fibrous membranes by electrospinning and hence the sensor. Scanning electron microscope, X-ray diffraction, Fourier transform infrared spectrometer, contact angle analyzer were used to characterize the morphology, structure, wettability, mechanical properties and piezoelectricity of the fibrous membranes. The test results show that an appropriate amount of FeCl3·6H2O could increase the relative content of β crystal type in the fibrous membrane and thus effectively improve the piezoelectric output of the sensor. However, too much FeCl3·6H2O would inhibit the formation of the β crystal type. When the mass fraction of FeCl3·6H2O is up to 0.5%, the ratio of β crystal type in the fiber crystal structure reaches a maximum of 68.74%, and the maximum output voltage reaches about 5 V. The response time of the sensor to the excitation process is up to 0.025 s. The response time is basically the same under different excitation frequencies, and the sensor shows higher piezoelectric output at dynamic high-frequency.

Key words: polyvinylidene fluoride, iron (III) chloride hexahydrate, flexible sensor, piezoelectricity, electrospinning

中图分类号: 

  • TP212.9

图1

柔性传感器的结构示意图"

图2

不同FeCl3·6H2O质量分数的PVDF/FeCl3复合纤维膜的扫描电镜照片(×5 000)"

图3

不同FeCl3·6H2O质量分数的PVDF/FeCl3复合纤维膜的直径分布图"

图4

不同FeCl3·6H2O质量分数的PVDF/FeCl3复合纤维膜的XRD和FT-IR谱图"

表1

PVDF/FeCl3复合纤维膜中β晶型的相对含量"

FeCl3·6H2O质量分数 β晶型的相对含量
纯PVDF纤维膜 50.48
0.1 60.94
0.3 61.82
0.5 68.74
0.8 66.25
1.0 59.57

图5

不同FeCl3·6H2O质量分数的PVDF/FeCl3复合纤维膜的接触角"

图6

不同质量分数FeCl3·6H2O的PVDF/FeCl3复合纤维膜的应力-应变曲线"

表2

PVDF/FeCl3复合纤维膜的力学性能数据"

FeCl3·6H2O质量分数/% 断裂应力/MPa 断裂伸长率/%
纯PVDF纤维膜 0.929 112.796
0.1 1.719 98.146
0.3 2.923 103.963
0.5 3.378 131.606
0.8 3.952 170.713
1.0 4.037 141.413

图7

不同FeCl3·6H2O质量分数的PVDF/FeCl3复合纤维膜传感器的压电响应曲线"

图8

不同激振频率条件下PVDF/FeCl3复合纤维膜传感器的压电响应曲线"

图9

不同激励频率下PVDF/FeCl3复合纤维膜传感器的输出电压"

图10

不同激励频率下PVDF/FeCl3复合纤维膜传感器的压电响应曲线局部放大图"

[1] NAG A, MUKHOPADHYAY S C, KOSEL J. Wearable flexible sensors: a review[J]. IEEE Sensors Journal, 2017,17(13):3949-3960.
doi: 10.1109/JSEN.2017.2705700
[2] GULLAPALLI H, VEMURU V S M, KUMAR A, et al. Flexible piezoelectric ZnO-paper nanocomposite strain sensor[J]. Small, 2010,6(15):1641-1646.
pmid: 20623526
[3] PANDEY S, GOSWAMI G K, NANDA K K. Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies[J]. Scientific Reports, 2013,3(7):132-136.
[4] LEI K F, LEE K F, LEE M Y. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement[J]. Microelectronic Engineering, 2012,99(78):1-5.
doi: 10.1016/j.mee.2012.06.005
[5] 沙永忠, 姜宏伟, 李盘文. 柔性压电传感器的设计[J]. 测控技术, 2011,30(3):1-4.
SHA Yongzhong, JIANG Hongwei, LI Panwen. Flexible piezoelectric sensor design[J]. Measurement and Control Technology, 2011,30(3):1-4.
[6] MARUTAKE M. The days when piezoelectric PVDF was discovered[J]. Ferroelectrics, 1995,171(1):5-6.
doi: 10.1080/00150199508018416
[7] KIM W J, HAN M H, SHIN Y H, et al. First-principles study of the α-β phase transition of ferroelectric poly(vinylidene difluoride): observation of multiple transition pathways[J]. The Journal of Physical Chemistry B, 2016,120(12):3240-3249.
doi: 10.1021/acs.jpcb.6b00881 pmid: 26937953
[8] KANG S B, WON S H, IM M J, et al. Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers[J]. Nanotechnology, 2017,28(39):31-35.
[9] LIU Z H, PAN C T, LIN L W, et al. Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning[J]. Sensors and Actuators A: Physical, 2013,193:13-24.
doi: 10.1016/j.sna.2013.01.007
[10] YU B, MAO M, YU H, et al. Enhanced piezoelectric performance of electrospun polyvinylidene fluoride doped with inorganic salts[J]. Macromolecular Materials and Engineering, 2017,302(11):890-902.
[11] DHAKRAS D, BORKAR V, OGALE S, et al. Enhanced piezoresponse of electrospun PVDF mats with a touch of nickel chloride hexahydrate salt[J]. Nanoscale, 2012,4(3):752-756.
pmid: 22234432
[12] SINGH V, SINGH B. Fabrication of PVDF-transition metal dichalcogenides based flexible piezoelectric nanogenerator for energy harvesting applications[J]. Materials Today: Proceedings, 2020,28:282-285.
doi: 10.1016/j.matpr.2020.02.073
[13] MOKHTARI F, SHAMSHIRSAZ M, LATIFI M. Investigation of β phase formation in piezoelectric response of electrospun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers ten-sion[J]. Polymer Engineering & Science, 2016,56(1):61-70.
doi: 10.1002/pen.24192
[14] 朱金海. PVDF压电薄膜及其传感器的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 3.
ZHU Jinhai. Preparation and performance study of PVDF piezoelectric film and sensor[D]. Harbin: Harbin Institute of Technology, 2011: 3.
[15] 梁园园, 黄庆林, 胡棚, 等. 静电直写聚偏氟乙烯纤维膜结构设计及应用[J]. 高分子材料科学与工程, 2020,36(7):1-12.
LIANG Yuanyuan, HUANG Qinglin, HU Peng, et al. Structure design and application of polyvinylidene fluoride fibrous membrane by electrostatic direct-writing[J]. Polymer Materials Science & Engineering, 2020,36(7):1-12.
[16] ANGAMMANA C J, JAYARAM S H. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology[J]. IEEE Transactions on Industry Applications, 2011,47(3):1109-1117.
doi: 10.1109/TIA.2011.2127431
[1] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[2] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[3] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[4] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[5] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[6] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[7] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[8] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[9] 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[10] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[11] 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8.
[12] 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173.
[13] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[14] 郝志奋, 徐乃库, 封严, 段梦馨, 肖长发. 聚甲基丙烯酸酯/聚丙烯酸酯共混纤维膜制备及其油水分离性能[J]. 纺织学报, 2020, 41(06): 21-26.
[15] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!