纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 37-41.doi: 10.13475/j.fzxb.20200401105

• 纤维材料 • 上一篇    下一篇

纳米SiO2对玄武岩纤维的表面改性

刘淑强, 武捷, 吴改红(), 阴晓龙, 李甫, 张曼   

  1. 太原理工大学 轻纺工程学院, 山西 晋中 030600
  • 收稿日期:2020-04-07 修回日期:2020-07-06 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 吴改红
  • 作者简介:刘淑强(1981—),男,副教授,博士。主要研究方向为功能与智能纺织品。
  • 基金资助:
    山西省高等学校科技成果转化培育项目(2020CG014);山西省研究生教育创新项目(2020SY466);江苏省生态纺织工程技术研发中心开放基金项目(YGKF-201805)

Surface modification of basalt fiber using nano-SiO2

LIU Shuqiang, WU Jie, WU Gaihong(), YIN Xiaolong, LI Fu, ZHANG Man   

  1. College of Textile Engineering, Taiyuan University of Technology, Jinzhong, Shanxi 030600, China
  • Received:2020-04-07 Revised:2020-07-06 Online:2020-12-15 Published:2020-12-23
  • Contact: WU Gaihong

摘要:

为提升玄武岩纤维与基体的界面相容性,采用偶联剂KH550改性后的纳米SiO2对玄武岩纤维表面进行粗糙化改性处理。分析了改性前后玄武岩纤维的表面形貌和化学结构,研究了纳米SiO2质量分数对玄武岩纤维力学性能、摩擦因数、吸湿性能的影响。结果表明:经纳米SiO2改性后,玄武岩纤维表面的粗糙度和比表面积增大,摩擦性能和吸湿性能显著增加,在纳米SiO2质量分数为5%时,玄武岩纤维摩擦因数由0.255提升至0.280,透湿率也提高至0.65%;与未改性的玄武岩纤维相比,改性后的玄武岩纤维表面出现了C—H键,且Si—O—Si键对应的振动峰强度变强,提高了纤维表面的极性;改性后玄武岩纤维的拉伸力学性能有一定提高,随着纳米SiO2质量分数的增加,玄武岩纤维的力学性能先上升后下降,当纳米SiO2质量分数为3% 时,其拉伸断裂强度最高可达40 cN/tex。

关键词: 玄武岩纤维, 高性能纤维, 纳米SiO2, 偶联剂KH550, 表面改性, 力学性能

Abstract:

In order to improve the interface compatibility of the basalt fiber with the matrix, coupling agent KH550 was used to modify the nano-SiO2 and the surface of the basalt fiber was modified by the modified nano-SiO2. The surface morphology and chemical structure of basalt fibers before and after modification were analyzed, and the effects of the mass fraction of nano-SiO2 on the mechanical properties, friction coefficient and moisture absorption performance of basalt fibers were studied. The results show that after nano-SiO2 surface treatment, the roughness and specific surface area of the basalt fiber surface is increased, and the friction and moisture absorption performance are increased significantly. When the nano-SiO2 mass fraction is 5%, the basalt fiber friction coefficient is increased from 0.255 to 0.280, and the moisture permeability is increased to 0.65%. Compared with the untreated basalt fiber, C—H bond appeared on the surface of the modified basalt fiber, and the intensity of the vibration peak corresponding to the Si—O—Si bond becomes stronger, increasing the polarity of the fiber surface. The tensile mechanical properties of the modified basalt fiber are also improved to some extent. With the increase of the amount of nano-SiO2, the mechanical properties of the basalt fiber increase at first and then decrease peak, and when the nano-SiO2 mass fraction is at 3%, the tensile fracture strength of basalt fiber reaches up to 40 cN/tex.

Key words: basalt fiber, high-performance fiber, nano-SiO2, coupling agent KH550, surface modification, mechanical property

中图分类号: 

  • TS102.6

图1

不同质量分数纳米SiO2改性玄武岩纤维的扫描电镜照片(×5 000)"

图2

纳米SiO2、KH550/SiO2、BF、KH550/SiO2/BF的红外光谱图"

图3

不同质量分数纳米SiO2改性玄武岩纤维的拉伸断裂强度"

图4

纳米SiO2质量分数对玄武岩纤维摩擦因数的影响"

图5

纳米SiO2质量分数对玄武岩纤维吸湿率的影响"

[1] 丁宝明, 张蕾, 刘嘉麒. 中国玄武岩纤维材料产业的发展态势[J]. 中国矿业, 2019,28(10):1-5.
DING Baoming, ZHANG Lei, LIU Jiaqi. Development trend of China's basalt fiber material industry[J]. China Mining Industry, 2019,28(10):1-5.
[2] 罗益锋. 新形势下高性能纤维与复合材料的主攻方向与新进展[J]. 高科技纤维与应用, 2019,44(5):1-22.
LUO Yifeng. The main attack direction and new development of high-performance fibers and composite materials under the new situation[J]. High-Tech Fibers and Applications, 2019,44(5):1-22.
[3] 李新娥. 玄武岩纤维和织物的研究进展[J]. 纺织学报, 2010,31(1):145-152.
LI Xin'e. Research progress of basalt fiber and fabric[J]. Journal of Textile Research, 2010,31(1):145-152.
[4] 魏晨, 郭荣辉. 玄武岩纤维的性能及应用[J]. 纺织科学与工程学报, 2019,36(3):89-94.
WEI Chen, GUO Ronghui. Properties and applications of basalt fibers[J]. Journal of Textile Science & Engineering, 2019,36(3):89-94.
[5] 吴金勇, 刘丽娜, 傅深渊. 纤维增强EP复合材料摩擦学性能研究进展[J]. 工程塑料应用, 2019,47(3):136-139.
WU Jinyong, LIU Lina, FU Shenyuan. Research progress on tribological properties of fiber reinforced EP composites[J]. Application of Engineering Plastics, 2019,47(3):136-139.
[6] 霍冀川, 雷永林, 王海滨, 等. 玄武岩纤维的制备及其复合材料的研究进展[J]. 材料导报, 2006,20(1):382-385.
HUO Jichuan, LEI Yonglin, WANG Haibin, et al. Research progress in preparation of basalt fiber and its composite materials[J]. Materials Reports, 2006,20(1):382-385.
[7] 雷静, 党新安, 李建军. 玄武岩纤维的性能应用及最新进展[J]. 化工新型材料, 2007,35(3):9-11.
LEI Jing, DANG Xin'an, LI Jianjun. Performance and application of basalt fiber and its latest progress[J]. New Chemical Materials, 2007,35(3):9-11.
[8] 曾瑶, 俞科静, 钱坤. 玄武岩纤维表面改性及界面效应[J]. 材料科学与工程学报, 2019,37(4):612-618.
ZENG Yao, YU Kejing, QIAN Kun. Surface modification and interfacial effects of basalt fibers[J]. Journal of Materials Science and Engineering, 2019,37(4):612-618.
[9] 傅宏俊, 马崇启, 王瑞. 玄武岩纤维表面处理及其复合材料界面改性研究[J]. 纤维复合材料, 2007(3):11-13.
FU Hongjun, MA Chongqi, WANG Rui. Study on surface treatment of basalt fiber and interface modification of composite materials[J]. Fiber Composites, 2007(3):11-13.
[10] 靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J]. 玻璃钢/复合材料, 2015 (6):29-35.
JIN Tingting, SHEN Shijie, LI Jing, et al. Effect of low temperature plasma treatment on the surface of basalt fiber and properties of composites[J]. Glass Reinforced Plastics/Composites, 2015(6):29-35.
[11] 曹海琳, 张春红, 张志谦, 等. 玄武岩纤维表面涂层改性研究[J]. 航空材料学报, 2007,27(5):77-82.
CAO Hailin, ZHANG Chunhong, ZHANG Zhiqian, et al. Study on the surface coating modification of basalt fiber[J]. Journal of Aeronautical Materials, 2007,27(5):77-82.
[12] 毕松梅, 朱钦钦, 赵堃, 等. 等离子体改性对玄武岩/聚丙烯复合材料性能的影响[J]. 产业用纺织品, 2013,31(6):32-35.
BI Songmei, ZHU Qinqin, ZHAO Yan, et al. Effect of plasma modification on properties of basalt/polypropylene composites[J]. Technical Textiles, 2013,31(6):32-35.
[13] LEE S O, RHEE K Y, PARK S J. Influence of chemical surface treatment of basalt fibers on interlaminar shear strength and fracture toughness of epoxy-based composites[J]. Journal of Industrial and Engineering Chemistry, 2015,32:153-156.
doi: 10.1016/j.jiec.2015.08.009
[14] 宋秋霞, 刘华武, 钟智丽, 等. 硅烷偶联剂处理对玄武岩单丝拉伸性能的影响[J]. 天津工业大学学报, 2010,29(1):19-22.
SONG Qiuxia, LIU Huawu, ZHONG Zhili, et al. Effect of silane coupling agent treatment on tensile properties of basalt monofilament[J]. Journal of Tiangong University, 2010,29(1):19-22.
[15] MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science, 2016,36:1-10.
doi: 10.1016/0169-4332(89)90894-5
[1] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[2] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[3] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[4] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[5] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[6] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[7] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[8] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[9] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[10] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[11] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[12] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
[13] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[14] 姜兆辉, 金梦甜, 郭增革, 贾曌, 王其才, 金剑. 聚芳酯纤维的化学稳定性及其腐蚀降解[J]. 纺织学报, 2019, 40(12): 9-15.
[15] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!