纺织学报 ›› 2020, Vol. 41 ›› Issue (12): 54-58.doi: 10.13475/j.fzxb.20200303105

• 纺织工程 • 上一篇    下一篇

开放/封闭空气层对阻燃织物热防护性能的影响

王琦1, 田苗1,2(), 苏云1,2, 李俊1,2, 余梦凡1, 许霄1   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2020-03-11 修回日期:2020-07-31 出版日期:2020-12-15 发布日期:2020-12-23
  • 通讯作者: 田苗
  • 作者简介:王琦(1997—),女,硕士生。主要研究方向为功能服装与服装舒适性。
  • 基金资助:
    中央高校基本科研业务费专项基金项目(2232020G-08);上海市教育委员会、上海市教育发展基金会“晨光计划”项目(18CG76);上海市青年科技英才扬帆计划项目(19YF1400600);上海市设计学Ⅳ类高峰学科资助项目(DA19202)

Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics

WANG Qi1, TIAN Miao1,2(), SU Yun1,2, LI Jun1,2, YU Mengfan1, XU Xiao1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-03-11 Revised:2020-07-31 Online:2020-12-15 Published:2020-12-23
  • Contact: TIAN Miao

摘要:

为探究衣下空气层间的传热方式对阻燃织物外观性能和阻燃织物系统传热机制的影响,基于热防护性能(TPP) 实验装置,构建开放式和封闭式空气层以模拟实际着装时“服装-人体皮肤”的空间关系。利用彩色图像处理方法对比热暴露前后的织物外观和热收缩情况,从能量传递、TPP值和二级烧伤时间角度评估“织物-空气层”系统的传热特性和热防护性能。结果表明:空气层的介入会降低热传递效率,进而提升阻燃织物的热防护性能,但会加速织物老化,加剧织物热收缩;当打开空气层与周围环境热量交换的通路时,空气层间热量的流动路径变复杂,且织物的热防护性能进一步提升。

关键词: 阻燃织物, 开放空气层, 封闭空气层, 传热方式, 热防护性能

Abstract:

To investigate the effects of heat transfer modes on appearance and thermal protective performance of thermal protective clothing with an air layer, the thermal protective performance (TPP) tester was established to simulate the actual spatial relationship between the human skin and garment with an open or closed air layer. Color image processing was used to evaluate the shrinkage of the fabrics before and after the heat exposure. The heat transfer and thermal protective performance of the “fabric-air layer” system were evaluated from the perspectives of energy transfer, TPP value and second degree burn time. Experimental results reveal that the presence of air layer decreases the heat transfer efficiency and improves the thermal protective performance of the flame-resistant fabrics. However, it also accelerates the aging and thermal shrinkage of the fabrics. When the heat exchange path between the air layer and the surrounding environment is opened, the fluid flow of heat within the air space becomes much sophisticated, and the thermal protective performance of fabric is further improved.

Key words: flame-resistant fabric, open air layer, closed air layer, heat transfer mode, thermal protective performance

中图分类号: 

  • TS941.73

表1

实验织物基本性能特征"

试样
编号
织物名称 纤维成分及含量 组织
结构
织物密度/
(根·(10 cm)-1)
面密度/
(g·m-2)
厚度/
mm
经向 纬向
N1 Nomex®ШA 间位芳纶/对位芳纶/抗静电纤维(93/5/2) 平纹 184 160 240 0.50
N2 Nomex®ШA 间位芳纶/对位芳纶/抗静电纤维(93/5/2) 平纹 143 153 250 0.52
N3 Kevlar 对位芳纶/间位芳纶(60/40) 平纹 214 192 200 0.34

图1

3种空气层示意图 注:qcond为入射热流的传导部分;qrad为入射热流的辐射部分;qconv为入射热流的对流部分。"

图2

热暴露4.5 s后试样的外观变化"

表2

TPP实验后N1、N2试样的面积保持率"

空气层形式 热暴露时间/s RN1/% RN2/%
无空气层 3.5 99.8 90.1
4.5 95.0 86.9
5.5 93.9 86.1
封闭式
空气层
3.5 94.2 87.8
4.5 90.0 87.3
5.5 92.1 85.4
开放式
空气层
3.5 94.0 85.2
4.5 92.6 82.5
5.5 86.6 81.9

表3

传感器温度升高情况"

空气层形式 热暴露时间/s ΔT1/℃ ΔT2/℃ ΔT3/℃
3.5 2.73 3.10 5.43
无空气层 4.5 6.27 6.77 11.10
5.5 12.80 11.80 18.90
封闭式
空气层
3.5 1.23 1.40 2.43
4.5 3.17 3.33 4.83
5.5 5.97 5.63 8.83
开放式
空气层
3.5 0.70 0.87 1.53
4.5 1.90 2.20 3.43
5.5 2.83 4.57 7.20

表4

织物的TPP值和二级烧伤时间"

试样
编号
无空气层 封闭式空气层 开放式空气层
TPP值/
(kW·s·m-2)
t2/s TPP值/
(kW·s·m-2)
t2/s TPP值/
(kW·s·m-2)
t2/s
N1 10.6 5.3 14.2 7.3 16.0 8.2
N2 11.3 5.8 17.2 8.8 19.9 10.2
N3 8.0 4.0 13.0 6.5 14.7 7.4
[1] SCOTT R A. Textiles for protection[M]. Cambridge: Woodhead Publishing, 2005: 31-59.
[2] NAYAK Rajkishore, HOUSHYAR Shadi, PADHYE Rajiv. Recent trends and future scope in the protection and comfort of fire-fighters'personal protective clo-thing[J]. Fire Science Reviews, 2014,3(1):4.
[3] TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
[4] 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015,36(7):162-168.
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(7):162-168.
[5] 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019,40(10):141-146.
CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric[J]. Journal of Textile Research, 2019,40(10):141-146.
[6] TALUKDAR Prabal, DAS Apurba, ALAGIRUSAMY Ramasamy. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body move-ment[J]. International Journal of Heat and Mass Transfer, 2017,108:271-291.
[7] SONG Guowen. Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
[8] TORVI David Andrew. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997: 50-67.
[9] GHAZY A, BERGSTROM D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer Part A: Applications, 2010,58(9):702-724.
[10] SAWCYN Chris Michael John. Heat transfer model of horizontal air gaps in bench top testing of thermal protective fabrics[D]. Saskatoon: University of Saskatchewan, 2003: 46-64.
[11] GHAZY Ahmed, BERGSTROM Donald J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat and Mass Transfer, 2013,49(6):775-788.
[12] TIAN Miao, LI Jun. 3D heat transfer modeling and parametric study of a human body wearing thermal protective clothing exposed to flash fire[J]. Fire and Materials, 2018,42(6):657-667.
[13] 李小辉, 管曼好, 李俊. 防火服织物的服用热防护性能评价方法[J]. 纺织学报, 2015,36(8):110-115.
LI Xiaohui, GUAN Manhao, LI Jun. Evaluation on thermal protective performance of fabric for firefighter protective clothing[J]. Journal of Textile Research, 2015,36(8):110-115.
[14] 苏云, 杨杰, 李睿, 等. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019,40(2):147-152.
SU Yun, YANG Jie, LI Rui, et al. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation[J]. Journal of Textile Research, 2019,40(2):147-152.
[15] 王莹. 多次闪火作用下织物及服装的热收缩与热防护性能研究[D]. 上海: 东华大学, 2016: 29-43.
WANG Ying. Research on thermal shrinkage and thermal protective performance of fabric and clothing after repeated flash fire exposure[D]. Shanghai: Donghua University, 2016: 29-43.
[1] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[2] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[3] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[4] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[5] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[6] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[7] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell 织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[8] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[9] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[10] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[11] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[12] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[13] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[14] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[15] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!