纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 1-9.doi: 10.13475/j.fzxb.20201205809

• 特邀论文 •    下一篇

静电纺纳米纤维功能性纱线的研究进展

杨宇晨1, 覃小红1(), 俞建勇2   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2020-12-02 修回日期:2020-12-22 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 覃小红
  • 作者简介:杨宇晨(1995—),男,博士生。主要研究方向为多尺度纺织纤维及其集合体的成形原理与功能应用。
  • 基金资助:
    国家自然科学基金项目(51973027);国家自然科学基金项目(51773037)

Research progress of transforming electrospun nanofibers into functional yarns

YANG Yuchen1, QIN Xiaohong1(), YU Jianyong2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2020-12-02 Revised:2020-12-22 Online:2021-01-15 Published:2021-01-21
  • Contact: QIN Xiaohong

摘要:

静电纺纳米纤维尺度效应和表/界面效应突出,但集合体的形式单一,结构稳定性较差,力学性能不足,纱线结构的纳米纤维集合体可有效综合纳米纤维和纺织结构双重优势,突破其应用瓶颈并拓宽应用范畴。为此,首先以静电纺纳米纤维构筑功能性纱线为主轴线,从结构成形原理与技术、功能设计与应用角度,系统综述了纳米纤维纱线的最新研究进展;其次从高效可控制备与实际应用等方面深入分析了纳米纤维纱线的潜在问题,并展望了该研究领域的未来发展趋势。研究认为,量小集成的微型高科技器件与量大面广的功能服装面料是各类纳米纤维功能性纱线走向工业化的主要应用途径,高效高品质绿色成形与多功能集成是其未来的发展重点。

关键词: 静电纺丝, 纳米纤维, 功能性纱线, 生物医用纺织品, 复合结构, 智能纺织品, 功能性纺织品

Abstract:

Electrospun nanofibers are well-known for unique size effect and surface/interface effect, but limited by single assembly form, insufficient structure stability and mechanical properties. Nanofiber assembly with yarn architecture contributes to fully integrate the respective merits of both nanofiber and textile structure, and breaks through the bottleneck and broadens the application of nanofibers. Firstly, the latest research progress of electrospun nanofiber-based yarns is systematically reviewed from the aspects of forming principle and technology, functional design and application. Furthermore, the potential problems in highly efficient, controllable preparation and practical application of nanofiber-based yarns are deeply analyzed, and the future development trend of this field is also prospected. It is considered that integrated high-tech micro-devices with small-batch preparation and wide range of functional fabrics with mass production are the main application directions of nanofiber-based yarn to industrialization, moreover, efficiently green fabrication and multi-functional integration of nanofiber yarns with high-quality are the future development priorities.

Key words: electrospinning, nanofiber, functional yarn, biomedical textiles, composite structure, intelligent textiles, functional textiles

中图分类号: 

  • TS104.76
[1] PARK J H, RUTLEDGE G C. 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine[J]. Macromolecules, 2017,50(15):5627-5642.
doi: 10.1021/acs.macromol.7b00864
[2] SHANG L, YU Y, LIU Y, et al. Spinning and applications of bioinspired fiber systems[J]. ACS Nano, 2019,13(3):2749-2772.
doi: 10.1021/acsnano.8b09651 pmid: 30768903
[3] RENEKER D H, CHUN I. Nanometre diameter fibres of polymer, produced by electrospinning[J]. Nanotechnology, 1996,7(3):216-223.
[4] WU J, WANG N, ZHAO Y, et al. Electrospinning of multilevel structured functional micro/nanofibers and their applications[J]. Journal of Materials Chemistry A, 2013,1(25):7290-7305.
[5] KO F, GOGOTSI Y, ALI A, et al. Electrospinning of continuous carbon nanotube-filled nanofiber yarns[J]. Advanced Materials, 2003,15(14):1161-1165.
[6] WANG X, ZHANG K, ZHU M, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008,49(11):2755-2761.
[7] SMIT E, BÚTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers [J]. Polymer, 2005,46(8):2419-2423.
doi: 10.1016/j.polymer.2005.02.002
[8] TIAN L, YAN T, PAN Z. Fabrication of continuous electrospun nanofiber yarns with direct 3D processability by plying and twisting[J]. Journal of Materials Science, 2015,50(21):7137-7148.
doi: 10.1007/s10853-015-9270-z
[9] TEO W E, GOPAL R, RAMASESHAN R, et al. A dynamic liquid support system for continuous electrospun yarn fabrication[J]. Polymer, 2007,48(12):3400-3405.
doi: 10.1016/j.polymer.2007.04.044
[10] THERON A, ZUSSMAN E, YARIN A L. Electrostatic field-assisted alignment of electrospun nanofibres[J]. Nanotechnology, 2001,12(3):384-390.
[11] YAN H, LIU L, ZHANG Z. Continually fabricating staple yarns with aligned electrospun polyacrylonitrile nanofibers[J]. Materials Letters, 2011,65(15/16):2419-2421.
[12] PAN H, LI L, HU L, et al. Continuous aligned polymer fibers produced by a modified electrospinning method[J]. Polymer, 2006,47(14):4901-4904.
[13] ALI U, ZHOU Y, WANG X, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns[J]. Journal of The Textile Institute, 2012,103(1):80-88.
[14] JOSEPH J, NAIR S V, MENON D. Integrating substrateless electrospinning with textile technology for creating biodegradable three-dimensional structures[J]. Nano Letters, 2015,15(8):5420-5426.
doi: 10.1021/acs.nanolett.5b01815 pmid: 26214718
[15] HE J X, QI K, ZHOU Y M, et al. Multiple conjugate electrospinning method for the preparation of continuous polyacrylonitrile nanofiber yarn[J]. Journal of Applied Polymer Science, 2014,131(8):613-644.
[16] HE J X, QI K, ZHOU Y M, et al. Fabrication of continuous nanofiber yarn using novel multi-nozzle bubble electrospinning[J]. Polymer International, 2014,63(7):1288-1294.
[17] WU S H, QIN X H. Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method[J]. Materials Letters, 2013,106:204-207.
doi: 10.1016/j.matlet.2013.05.010
[18] ZHOU Y, WANG H, HE J, et al. Novel method for preparation of continuously twisted nanofiber yarn based on a combination of stepped airflow electrospinning and friction twisting[J]. Journal of Materials Science, 2018,53(22):15735-15745.
doi: 10.1007/s10853-018-2725-2
[19] KUCUKALI-OZTURK M, OZDEN-YENIGUN E, NERGIS B, et al. Nanofiber-enhanced lightweight composite textiles for acoustic applications[J]. Journal of Industrial Textiles, 2017,46(7):1498-1510.
doi: 10.1177/1528083715622427
[20] WANG L, WU Y, GUO B, et al. Nanofiber yarn/hydrogel core-shell scaffolds mimicking native skeletal muscle tissue for Guiding 3D myoblast alignment, elongation, and differentiation[J]. Acs Nano, 2015,9(9):9167-9179.
doi: 10.1021/acsnano.5b03644 pmid: 26280983
[21] SHAO W, HE J, HAN Q, et al. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering[J]. Materials Science & Engineering: C, 2016,67:599-610.
[22] WU S, DUAN B, LIU P, et al. Fabrication of aligned nanofiber polymer yarn networks for anisotropic soft tissue scaffolds[J]. Acs Applied Materials & Interfaces, 2016,8(26):16950-16960.
pmid: 27304080
[23] JOSEPH J, KRISHNAN A G, CHERIAN A M, et al. Transforming nanofibers into woven nanotextiles for vascular application[J]. ACS Applied Materials & Interfaces, 2018,10(23):19449-19458.
doi: 10.1021/acsami.8b05096 pmid: 29792328
[24] LI Y, GUO F, HAO Y, et al. Helical nanofiber yarn enabling highly stretchable engineered microtissue[J]. Proceedings of the National Academy of Sciences, 2019,116(19):9245-9250.
doi: 10.1073/pnas.1821617116
[25] ZHOU Y, HE J, WANG H, et al. Carbon nanofiber yarns fabricated from co-electrospun nanofibers[J]. Materials & Design, 2016,95:591-598.
[26] GUAN X, ZHENG G, DAI K, et al. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility[J]. ACS Applied Materials & Interfaces, 2016,8(22):14150-14159.
doi: 10.1021/acsami.6b02888 pmid: 27172292
[27] YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials & Design, 2018,143:214-223.
[28] LEVITT A, SEYEDIN S, ZHANG J, et al. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns[J]. Small, 2020,16(26):e2002158.
doi: 10.1002/smll.202002158 pmid: 32500606
[29] LIU P, WU S, ZHANG Y, et al. A fast response ammonia sensor based on coaxial PPy-PAN nanofiber yarn[J]. Nanomaterials, 2016,6(7):121.
[30] WU S, LIU P, ZHANG Y, et al. Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices[J]. Sensors and Actuators B-Chemical, 2017,252:697-705.
[31] KIM D H, KIM S J, SHIN H, et al. High-resolution, fast, and shape-conformable hydrogen sensor platform: polymer nanofiber yarn coupled with nanograined Pd@Pt[J]. ACS Nano, 2019,13(5):6071-6082.
doi: 10.1021/acsnano.9b02481 pmid: 31063349
[32] GAO Y, GUO F, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020,14(3):3442-3450.
doi: 10.1021/acsnano.9b09533 pmid: 32149493
[33] BARANI H. Antibacterial continuous nanofibrous hybrid yarn through in situ synjournal of silver nanoparticles: preparation and characterization[J]. Materials Science & Engineering: C, 2014,43:50-57.
[34] FAN L, MA Q, TIAN J, et al. Novel nanofiber yarns synchronously endued with tri-functional performance of superparamagnetism, electrical conductivity and enhanced fluorescence prepared by conjugate electrospinning[J]. RSC Advances, 2017,7(77):48702-48711.
[35] FAN L, MA Q, TIAN J, et al. Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence[J]. Journal of Materials Science, 2017,53(3):2290-2302.
[36] SHENG Y, TIAN J, XIE Y, et al. Neoteric conjugative electrospinning towards alloplastic nanofiber yarns affording enhanced upconversion luminescence and tailored magnetism[J]. Chem Nano Mat, 2020,6(2):298-307.
[37] HOSSEINI RAVANDI S A, MEHRARA S, SADRJAHANI M, et al. Tunable wicking behavior via titanium oxide embedded in polyacrylonitrile nanofiber strings of yarn[J]. Polymer Bulletin, 2019,77(1):307-322.
[38] JIN S, XIN B, ZHENG Y. Preparation and characterization of polysulfone amide nanoyarns by the dynamic rotating electrospinning method[J]. Textile Research Journal, 2017,89(1):52-62.
[39] ZHOU F L, GONG R H, PORAT I. Nanocoating on filaments by electrospinning[J]. Surface & Coatings Technology, 2009,204(5):621-628.
[40] ZHOU F L, GONG R H, PORAT I. Nano-coated hybrid yarns using electrospinning[J]. Surface & Coatings Technology, 2010,204(21/22):3459-3463.
[41] WENYU S, TEBYETEKERWA M, MARRIAM I, et al. Polyester@MXene nanofibers-based yarn electrodes[J]. Journal of Power Sources, 2018,396:683-690.
[42] TEBYETEKERWA M, XU Z, LI W, et al. Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage[J]. ACS Applied Energy Materials, 2017,1(2):377-386.
[43] MARRIAM I, WANG X, TEBYETEKERWA M, et al. A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties[J]. Journal of Materials Chemistry A, 2018,6(28):13633-13643.
[44] LIU C K, HE H J, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016,112:456-461.
[45] SU C I, LAI T C, LU C H, et al. Yarn formation of nanofibers prepared using electrospinning[J]. Fibers and Polymers, 2013,14(4):542-549.
[46] RAVANDI S A H, SANATGAR R H, DABIRIAN F. Wicking phenomenon in nanofiber-coated filament yarns[J]. Journal of Engineered Fibers and Fabrics, 2013,8(3):10-18.
[47] GU Z, YIN H, WANG J, et al. Fabrication and characterization of TGF-beta1-loaded electrospun poly (lactic-co-glycolic acid) core-sheath sutures[J]. Colloids & Surfaces B Biointerfaces, 2018,161:331-338.
doi: 10.1016/j.colsurfb.2017.10.066 pmid: 29096378
[48] PADMAKUMAR S, JOSEPH J, NEPPALLI M H, et al. Electrospun polymeric core-sheath yarns as drug eluting surgical sutures[J]. Acs Applied Materials & Interfaces, 2016,8(11):6925-6934.
doi: 10.1021/acsami.6b00874 pmid: 26936629
[49] MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018,399:406-413.
doi: 10.1016/j.jpowsour.2018.07.022
[50] MAO N, PENG H, QUAN Z, et al. Wettability control in tree structure-based 1D fiber assemblies for moisture wicking functionality[J]. Acs Applied Materials & Interfaces, 2019,11(47):44682-44690.
doi: 10.1021/acsami.9b14370 pmid: 31596064
[51] MAO N, YE J, QUAN Z, et al. Tree-like structure driven water transfer in 1D fiber assemblies for functional moisture-wicking fabrics[J]. Materials & Design, 2020,186:108305.
[52] MEMIS N K, KAYABASI G, YILMAZ D. Development of a novel hybrid yarn production process for functional textile products[J]. Journal of Industrial Textiles, 2019,48(9):1462-1488.
[53] JIANG G, ZHANG J, JI D, et al. A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns[J]. Fibers and Polymers, 2017,18(5):987-992.
[54] YANG Y, ZHAO Y, QUAN Z, et al. An efficient hybrid strategy for composite yarns of micro/nano-fibers[J]. Materials & Design, 2019,184:108196.
[55] QIU Q, CHEN S, LI Y, et al. Functional nanofibers embedded into textiles for durable antibacterial properties[J]. Chemical Engineering Journal, 2020,384:123241.
[56] YANG Y, QUAN Z, ZHANG H, et al. Investigation on the processability, structure and properties of micro/nano-fiber composite yarns produced by trans-scale spinning[J]. Journal of Industrial Textiles, 2020.DOI: 10.1177/1528083720941177.
[57] WU S, ZHOU R, ZHOU F, et al. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application[J]. Materials Science & Engineering: C, 2020,106:110268.
[58] CAI J, XIE X, LI D, et al. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering[J]. Biomaterials Science, 2020,8(16):4413-4425.
pmid: 32648862
[59] LIU C, LI B, MAO X, et al. Controllable aligned nanofiber hybrid yarns with enhanced bioproperties for tissue engineering[J]. Macromolecular Materials and Engineering, 2019,304:1900089.
[60] WU S, NI S, JIANG X, et al. Guiding mesenchymal stem cells into myelinating schwann cell-like phenotypes by using electrospun core-sheath nanoyarns[J]. ACS Biomaterials Science & Engineering, 2019,5(10):5284-5294.
doi: 10.1021/acsbiomaterials.9b00748 pmid: 33455233
[61] YOU X, HE J, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018,6(47):12981-12991.
[62] MA L, ZHOU M, WU R, et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing[J]. ACS Nano, 2020,14(4):4716-4726.
doi: 10.1021/acsnano.0c00524 pmid: 32255615
[1] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[2] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[3] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[4] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[5] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[6] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[7] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/ 氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26.
[10] 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173.
[11] 王子希, 胡毅. 基于ZnCo2 O4 的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18.
[12] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[13] 段方燕, 王闻宇, 金欣, 牛家嵘, 林童, 朱正涛. 淀粉纤维的成形及其载药控释研究进展[J]. 纺织学报, 2020, 41(10): 170-177.
[14] 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173.
[15] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!