纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 125-132.doi: 10.13475/j.fzxb.20200707808

• 服装工程 • 上一篇    下一篇

基于图像的人体颈肩部三维模型构建

王婷1, 顾冰菲1,2,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.浙江省服装工程技术研究中心, 浙江 杭州 310018
    3.丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室, 浙江 杭州 310018
  • 收稿日期:2020-07-30 修回日期:2020-10-14 出版日期:2021-01-15 发布日期:2021-01-21
  • 通讯作者: 顾冰菲
  • 作者简介:王婷(1995—),女,硕士生。主要研究方向为数字化服装技术。
  • 基金资助:
    国家自然科学基金项目(61702461);国家自然科学基金项目(61702460);中国纺织工业联合会科技指导性项目(2018079);2020年“纺织之光”应用基础研究项目(J202007);浙江理工大学科研业务费专项资金资助项目(2020Q051);浙江理工大学服饰文化创新团队项目(11310031282006)

3-D modeling of neck-shoulder part based on human photos

WANG Ting1, GU Bingfei1,2,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-30 Revised:2020-10-14 Online:2021-01-15 Published:2021-01-21
  • Contact: GU Bingfei

摘要:

为实现个性化服装在线设计和虚拟试衣,提出一种基于人体正侧面照片的尺寸测量及建模方法。首先结合202名青年女性的三维点云数据确定与人体颈肩部形态相关的8个特征截面层,以各截面层中心点为基准点每隔10°测量角度半径并分析其与截面厚度、宽度之间的关系,建立各截面层的曲线形态规则。然后基于人体正侧面照片进行图像分割以提取人体轮廓,通过人体高度比例关系识别颈肩部特征点所在高度区域,结合颈肩部形态规律提取各特征截面层曲线形态规则所需参数。最后根据曲线形态规则和人体测量参数,通过NURBS曲面建模实现基于人体正侧面照片的颈肩部三维模型构建。结果表明:基于人体照片提取的人体基本参数值的误差百分比均小于5%,且使用该方法构建的三维模型与真实值之间的误差绝对值均在1 cm或1°以内。

关键词: 颈肩部形态, 人体照片, 尺寸提取, 曲线规则, 三维建模

Abstract:

In order to facilitate personalized clothing online design and virtual fitting, a method of size extraction and 3-D modeling based on the front and side photographs of human body was proposed. Eight characteristic cross-sectional layers related to the neck-shoulder shape were determined based on 202 young women's 3-D point cloud data. Taking the center point of each cross-section layer as the reference point, the angle radius was measured every 10° and the relationship among the angle radius, the thickness and width of the curves were analyzed to establish the curve shape rules of each sectional layer. Then, the image segmentation technology was used to extract the human contour based on the front and side photos, the height area where the neck-shoulder feature points were located was identified through the height proportion of the human body, and the parameters required for the curve shape rules of each characteristic section were extracted with the neck-shoulder shape rules. Finally, according to the curve shape rules and anthropometric parameters, NURBS surface modeling was used to realize the 3-D model construction of neck and shoulder based on human body photos. The results show that the error percentage of the basic parameters extracted from human body photos is less than 5%, and the absolute error between the 3-D model constructed by this method and the real value is within 1 cm or 1°, which proves the feasibility of this method, and provides technical support for the automatic generation of garment pattern and 3-D virtual fitting.

Key words: neck-shoulder shape, human body photos, size extraction, virtual fitting, 3-D modeling

中图分类号: 

  • TS941.17

表1

实验对象基本尺寸信息"

参数 身高/cm 颈点高/cm 侧颈点高/cm 肩点高/cm 腋下点高/cm 颈围/cm 侧颈围/cm 肩围/cm 腋下围/cm
最小值 154.1 130.7 125.6 124.0 110.0 29.5 33.6 59.3 76.9
最大值 172.4 148.6 145.8 145.6 133.0 40.8 46.9 82.8 99.4
平均值 161.4 137.8 135.4 132.5 122.1 33.5 38.9 72.8 87.1
标准差 3.9 3.8 3.6 4.5 3.9 2.3 2.7 4.5 4.5
变异系数/% 2.4 2.8 2.7 3.4 3.2 6.9 6.9 6.2 5.2

表2

样本量的确定"

测量项目 样本均值xˉ/cm 标准差s/cm 样本量n
身高 161.43 3.93 23
颈围 33.54 2.27 176
肩围 72.76 4.45 144
腋下围 87.08 4.47 101

图1

拍摄姿势示意图"

图2

颈肩部截面层确定"

图3

MER算法示意图"

图4

肩部截面曲线测量示意图"

表3

相关性分析"

角度
半径
肩厚 肩宽
r sig. r sig.
R0 0.970** 0.000 0.723** 0.000
R10 0.976** 0.000 0.743** 0.000
R20 0.979** 0.000 0.686** 0.000
R30 0.972** 0.000 0.682** 0.000
R40 0.897** 0.000 0.808** 0.000
R50 0.781** 0.000 0.851** 0.000
R60 0.631** 0.000 0.858** 0.000
R70 0.491** 0.005 0.855** 0.000
R80 0.343 0.050 0.843** 0.000
R90 0.672** 0.000 0.983** 0.000

图5

肩部截面R140散点图"

表4

肩截面部分角度半径与肩厚、肩宽的回归方程"

角度/(°) 回归方程 R2
0 R0=0.491D-0.481 0.941
10 R10=0.472D+3.040 0.953
20 R20=0.490D+3.467 0.959
30 R30=0.541D+0.293 0.944
40 R40=0.390D+0.092W-3.813 0.875
50 R50=0.228D+0.161W+2.987 0.793
60 R60=0.051D+0.287W-4.381 0.739
70 R70=-0.198D+0.475W-17.565 0.746
80 R80=-0.762D+0.830W-23.305 0.808
90 R90=0.501W-2.330 0.966

图6

正侧面图像处理"

表5

颈肩部尺寸定义"

高度 宽度 厚度
参数 符号 参数 符号 参数 符号
颈点高 HNP 颈宽 WNP 颈厚 DNP
侧颈点高 HSNP 侧颈宽 WSNP 侧颈厚 DSNP
肩点高 HSP 肩宽 WSP 肩厚 DSP
腋点高 HAP 腋下宽 WAP 腋下厚 DAP
身高 H

图7

二维尺寸提取示意图"

图8

颈厚测量示意图"

表6

二维提取误差分析"

指标 特征
部位
成对差分(提取值-测量值) T 显著性 相关
系数
平均绝对
误差/cm
误差
百分比/%
均值/cm 标准差/cm 标准误差
厚度 颈部 -0.086 1 0.367 7 0.058 1 -1.481 0.147 0.868 0.32 3.05
侧颈部 -0.115 7 0.427 7 0.067 6 -1.710 0.095 0.877 0.37 3.55
肩部 -0.068 6 0.493 6 0.078 0 -0.879 0.385 0.908 0.43 3.46
腋下 -0.267 0 0.877 5 0.138 7 -1.924 0.062 0.847 0.75 3.78
宽度 颈部 -0.022 2 0.400 8 0.063 4 -0.351 0.728 0.859 0.34 3.24
侧颈部 -0.053 2 0.489 0 0.077 3 -0.689 0.495 0.861 0.43 3.20
肩部 0.059 9 0.788 9 0.124 7 0.480 0.634 0.910 0.66 2.12
腋下 0.050 4 0.597 8 0.094 5 0.005 3 0.597 0.964 0.51 1.62

图9

中心调整示意图"

图10

样本的颈肩部模型"

表7

规格允许误差"

服装类型 误差/cm
颈围 肩宽 胸围
西服 ±0.6 ±0.6 ±2.0
衬衫 ±0.6 ±0.8 ±2.0
连衣裙 ±0.6 ±0.8 ±2.0

表8

三维建模误差分析"


部位 肩斜
角/(°)
背入
角/(°)
颈厚/
cm
颈宽/
cm
侧颈厚/
cm
侧颈宽/
cm
肩厚/
cm
肩宽/
cm
腋下厚/
cm
腋下宽/
cm
颈围/
cm
侧颈围/
cm
肩围/
cm
腋下围/
cm
1# 模型
尺寸
23.5 17.8 11.6 12.4 12.0 15.5 12.5 33.8 20.8 33.6 37.7 43.7 76.9 90.9
三维测
量尺寸
22.6 17.9 11.9 12.1 12.0 15.6 12.9 33.8 20.6 33.8 38.2 44.3 77.9 91.6
误差 -0.9 0.1 0.3 -0.3 0.0 0.1 0.4 0.0 -0.2 0.2 0.5 0.6 1.0 0.7
2# 模型
尺寸
24.2 12.9 10.0 10.6 10.5 13.6 13.3 30.7 20.2 30.1 32.1 38.2 71.3 84.9
三维测
量尺寸
24.9 12.8 10.2 11.0 10.4 13.8 13.5 30.9 20.4 30.2 32.0 38.3 71.7 85.2
误差 0.7 -0.1 0.2 0.4 -0.1 0.2 0.2 0.2 0.2 0.1 -0.1 0.1 0.4 0.3
[1] CHENG Z Q, CHEN Y, MARTIN R R, et al. Parametric modeling of 3D human body shape-A survey[J]. Computers & Graphics, 2018,71:88-100.
[2] PISHCHULIN L, WUHRER S, HELTEN T, et al. Building statistical shape spaces for 3D human modeling[J]. Pattern Recognition, 2017,67:276-286.
[3] HEEKYUNG J, CHEN J. A study on 3D virtual body formation and deformation by body shape analysis[J]. International Journal of Clothing Science and Technology, 2019,31(6):755-776.
[4] LI J, YU Q, XU H, et al. Measuring and modeling human bodies with a novel relocatable mechatronic sensor-net[J]. Textile Research Journal, 2019,89(19/20):4131-4147.
[5] SHIN J Y, Nam Y J. A study on body shape for 3D virtual body shape transformation-focusing on the women with age of forties[J]. Fashion & Textile Research Journal, 2015,17(2):265-277.
[6] MARKIEWICZ Ł, WITKOWSKI M, SITNIK R, et al. 3D anthropometric algorithms for the estimation of measurements required for specialized garment design[J]. Expert Systems With Application, 2017,85(1):366-385.
[7] AFFUSO O, PRADHAN L, ZHANG C, et al. A method for measuring human body composition using digital images[J]. PLoS ONE, 2018,13(11):1-13.
[8] 许明星, 李重. 基于图像的人体特征点提取与尺寸测量[J]. 计算机系统应用, 2018,27(6):87-94.
XU Mingxing, LI Zhong. Image-based feature extraction and dimension measurement for human bodies[J]. Computer Systems & Applications, 2018,27(6):87-94.
[9] SENANAYAKE M, RAHEJA A, ZHANG Y H. Automated human body measurement extraction[J]. International Journal of Clothing Science & Technology, 2018,30(2):175-194.
[10] 马黎. 基于图像的非接触式人体测量算法的研究与实现[D]. 成都: 电子科技大学, 2017: 36-47.
MA Li. Research and implementation of non-contacting anthropometric algorithm based on image[D]. Chengdu: University of Electronic Science and Technology of China, 2017: 36-47.
[11] 胡新荣, 刘嘉文, 刘军平, 等. 基于ABSS的着装人体多特征点提取与尺寸测量[EB/OL]. 计算机工程, 2020: 1-10.[2020-01-10]. http://kns.cnki.net/kcms/detail/31.1289.tp.20200110.1329.004.html.
HU Xinrong, LIU Jiawen, LIU Junping, et al. Multi-features extraction and dimension measurement for dressed human bodies via adaptive body structure segmentation[EB/OL]. Computer Engineering, 2020: 1-10.[2020-01-10]. http://kns.cnki.net/kcms/detail/31.1289.tp.20200110.1329.004.html.
[12] CHEN G, LI J, ZENG J, et al. Optimizing human model reconstruction from RGB-D images based on skin detection[J]. Virtual Reality, 2016,20(3):159-172.
[13] 董鹏辉, 柯良军. 基于图像的三维重建技术综述[J]. 无线电通信技术, 2019,45(2):115-119.
DONG Penghui, KE Liangjun. Overview of 3D reconstruction techniques based on images[J]. Radio Communications Technology, 2019,45(2):115-119.
[14] 师乐. 基于二维图像实时个性化人体模型重建算法的研究[D]. 西安: 西安工程大学, 2019: 25-40.
SHI Le. Research on real-time personalized human body model reconstruction algorithm based on two-dimensional image[D]. Xi'an: Xi'an Polytechnic University, 2019: 25-40.
[15] 王力. 基于图像的非接触式人体测量与建模技术研究[D]. 西安:西安工程大学, 2018: 27-51.
WANG Li. Research on non-contacting human body measurement and modeling technology based on image[D]. Xi'an: Xi'an Polytechnic University, 2018: 27-51.
[16] 王永波. 基于3D人体测量的江浙地区青年男性腰臀部特征研究[D]. 无锡: 江南大学, 2019: 12-13.
WANG Yongbo. Study on characteristics of Jiangsu and Zhejiang young male's waist-hip based on 3D Body measurement[D]. Wuxi: Jiangnan University, 2019: 12-13.
[17] 贺莉文. 基于肩截面曲线的弓背型青年男体细分与识别模型[D]. 苏州: 苏州大学, 2018: 38-39.
HE Liwen. Classification and recognition model of the hunchback young male body based on shoulder section curve[D]. Suzhou: Soochow University, 2018: 38-39.
[18] 余张君. 基于中老年着装人体美评价的旗袍用人台建模研究[D]. 上海: 东华大学, 2018: 40-42.
YU Zhangjun. Research on cheongsam mannequin modeling based on the evaluation of physical beauty in middle-aged and elderly group[D]. Shanghai: Donghua University, 2018: 40-42.
[19] 王兴晨, 路春光, 赵震, 等. 逆向工程特征点提取与参数化建模方法研究[J]. 机械设计与制造, 2018,323(1):222-225.
WANG Xingchen, LU Chunguang, ZHAO Zhen, et al. Research on extraction from reverse engineering characteristics section and parameterized modeling method[J]. Machinery Design & Manufacture, 2018,323(1):222-225.
[1] 王婷, 顾冰菲. 基于二维图像的青年女性颈肩部形态自动识别[J]. 纺织学报, 2020, 41(12): 111-117.
[2] 王旭, 储长流, 倪庆清, 刘新华. 运用MAXScript语言的单层机织物结构三维建模[J]. 纺织学报, 2019, 40(01): 159-165.
[3] 沈奕君 张婷婷 柯莹 王宏付. 三维参数化技术在构建现代服装新形态中的应用[J]. 纺织学报, 2018, 39(12): 118-123.
[4] 金兰名 蒋高明 丛洪莲. 三维纬编提花织物的计算机仿真及系统实现[J]. 纺织学报, 2016, 37(07): 155-161.
[5] 金兰名 蒋高明 丛洪莲. 纬编提花绗缝织物凹凸曲面的测量及三维建模[J]. 纺织学报, 2016, 37(06): 148-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!