纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 22-29.doi: 10.13475/j.fzxb.20200603108
WANG He(), WANG Hongjie, RUAN Fangtao, FENG Quan
摘要:
为研究炭化温度对碳纳米纤维电极性能的影响,采用静电纺丝法制备了聚丙烯腈/线性酚醛树脂(PAN/PF)纳米纤维,然后经不同温度炭化处理得到不同结构与性能的碳纳米纤维,并制备成电极材料。对碳纳米纤维的表面形貌、比表面积、孔结构、石墨化程度和元素含量,以及碳纳米纤维电极的电化学性能进行测试与表征。结果表明:PAN/PF碳纳米纤维具有高的比表面积、分级多孔结构、良好的纤维连通以及优异的石墨化程度;当炭化温度为1 000 ℃时,碳纳米纤维的比表面积达到1 468 m2/g,总孔体积为0.89 cm3/g,相应电极的比电容达到395 F/g;当炭化温度为1 200 ℃时,碳纳米纤维的导电性能最佳,电导率为8.23 S/cm,其制备的电极材料具有最高的比电容保持率,为63%。
中图分类号:
[1] | RAZA Waseem, ALI Faizan, RAZA Nadeem, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018,52:441-473. |
[2] | WANG Faxing, WU Xiongwei, YUAN Xinhai, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017,46(22):6816-6854. |
[3] | MENG Qiufeng, CAI Kefeng, CHEN Yuanxun, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017,36:268-285. |
[4] | 刘呈坤, 贺海军, 孙润军, 等. 静电纺制备多孔纳米纤维材料的研究进展[J]. 纺织学报, 2017,38(3):168-173. |
LIU Chengkun, HE Haijun, SUN Runjun, et al. Research development for preparation of porous electrospun nanomaterials[J]. Journal of Textile Research, 2017,38(3):168-173. | |
[5] | 康卫民, 范兰兰, 邓南平, 等. 静电纺多孔碳纳米纤维制备与应用研究进展[J]. 纺织学报, 2017,38(11):168-176. |
KANG Weimin, FAN Lanlan, DENG Nanping, et al. Research progress in preparation and application of electrospinning porous carbon nanofibers[J]. Journal of Textile Research, 2017,38(11):168-176. | |
[6] | 王赫, 王洪杰, 王闻宇, 等. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 材料导报, 2018,32(5):730-734. |
WANG He, WANG Hongjie, WANG Wenyu, et al. Research progress in polyacrylonitrile (PAN) based carbon nanofibers electrode materials for supercapaci-tor[J]. Materials Reports, 2018,32(5):730-734. | |
[7] | NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers:a state-of-the-art review[J]. Progress in Polymer Science, 2012,37(3):487-513. |
[8] | WANG He, WANG Wenyu, WANG Hongjie, et al. High performance supercapacitor electrode materials from electrospun carbon nanofibers in situ activated by high decomposition temperature polymer[J]. ACS Applied Energy Materials, 2018,1(2):431-439. |
[9] | NIU Haitao, ZHANG Jin, XIE Zongli, et al. Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials[J]. Carbon, 2011,49(7):2380-2388. |
[10] | HSU Y H, LAI C C, HO C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014,127:369-376. |
[11] | TENG M, QIAO J, LI F, et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules[J]. Carbon, 2012,50(8):2877-2886. |
[12] | MA C, SONG Y, SHI J, et al. Phenolic-based carbon nanofiber webs prepared by electrospinning for supercapacitors[J]. Materials Letters, 2012,76:211-214. |
[13] | WANG H, NIU H, WANG H, et al. Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance[J]. Journal of Power Sources, 2021,482:228986. |
[14] | MUNIZ F T L, MIRANDA M A R, MORILLA D C, et al. The Scherrer equation and the dynamical theory of X-ray diffraction[J]. Acta Crystallographica Section A: Foundations and Advances, 2016,72(3):385-390. |
[15] | LIM D J, MARKS N A, ROWLES M R. Universal Scherrer equation for graphene fragments[J]. Carbon, 2020,162:475-480. |
[16] | 郝欢欢, 刘晶冰, 李坤威, 等. 拉曼光谱表征石墨烯结构的研究进展[J]. 材料工程, 2018,46(5):1-10. |
HAO Huanhuan, LIU Jingbing, LI Kunwei, et al. Research progress on characterization of graphene structure by Raman spectroscopy[J]. Journal of Materials Engineering, 2018,46(5):1-10. | |
[17] | SONG Ziyang, ZHU Dazhang, LI Liangchun, et al. Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor[J]. Journal of Materials Chemistry A, 2019,7(3):1177-1186. |
[18] | CHEN Mingfeng, YU Dan, ZHENG Xiaozhong, et al. Biomass based N-doped hierarchical porous carbon nanosheets for all-solid-state supercapacitors[J]. Journal of Energy Storage, 2019,21:105-112. |
[1] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[2] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[3] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[4] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/ 聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[5] | 王霁龙, 刘岩, 景媛媛, 许庆丽, 钱祥宇, 张义红, 张坤. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12): 157-165. |
[6] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/ FeCl3 复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[7] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[8] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[9] | 王子希, 胡毅. 基于ZnCo2 O4 的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[10] | 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/ 棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106. |
[11] | 韩佳蕊, 黄珍珍, 王佳珺, 殷淏, 高晶, 劳继红, 王璐. 医用敷料用柔性金属电极的制备及其细胞毒性分析[J]. 纺织学报, 2020, 41(09): 174-182. |
[12] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[13] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[14] | 方舟, 宋磊磊, 孙保金, 李文肖, 张超, 闫俊, 陈磊. 碳纳米纤维结构设计及其对水污染物吸附机制的研究进展[J]. 纺织学报, 2020, 41(08): 135-144. |
[15] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2 纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
|