纺织学报 ›› 2021, Vol. 42 ›› Issue (01): 96-102.doi: 10.13475/j.fzxb.20200404007

• 染整与化学品 • 上一篇    下一篇

采用激光扫描建模的筒子纱卷绕密度测量方法

周其洪1,2(), 孙宝通2, 岑均豪3, 占齐宸2   

  1. 1.东华大学 纺织装备教育部工程研究中心, 上海 201620
    2.东华大学 机械工程学院, 上海 201620
    3.广州盛原成自动化科技有限公司, 广东 广州 511400
  • 收稿日期:2020-04-16 修回日期:2020-09-04 出版日期:2021-01-15 发布日期:2021-01-21
  • 作者简介:周其洪(1976—),男,教授,博士。主要研究方向为高端纺织装备机电一体化、自动化和智能化以及机器人技术。E-mail: zhouqihong@dhu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB1304000)

Measurement method of winding density of cheese package based on laser scanning and modeling

ZHOU Qihong1,2(), SUN Baotong2, CEN Junhao3, ZHAN Qichen2   

  1. 1. Engineering Research Center of Advanced Textile Machinery, Ministry of Education, Donghua University,Shanghai 201620, China
    2. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    3. Guangzhou Seyounth Automation Technology Co., Ltd., Guangzhou, Guangdong 511400, China
  • Received:2020-04-16 Revised:2020-09-04 Online:2021-01-15 Published:2021-01-21

摘要:

为适应智能高质量染色需求,解决当前筒子纱卷绕密度测量精度差、效率低和数字化管控不理想等问题,提出了基于激光位移传感器快速扫描获取数据建立数学模型的筒子纱卷绕密度测量方法。通过控制采样距离和扫描路径及范围,得到充分反映筒子纱形状特征的原始点集。根据不同噪声点的特征和统计学理论,对原始点集加入约束条件实现预处理,通过最小二乘法拟合和旋转面方程对点集分类处理,重建出高精度的筒子纱纱线表面轮廓的数学模型,运用三重积分得到纱线体积,从而计算出精确的卷绕密度。实验结果表明,本文方法相对误差可控制在2.5%以内,标准偏差0.069%,效率高,性能明显优于行业现用方法。

关键词: 筒子纱, 卷绕密度, 激光测量, 数学建模, 数据降噪, 智能染色工厂

Abstract:

In order to meet the requirement of intelligent high-quality dyeing, and solve the problems of poor accuracy, low efficiency and unsatisfactory digital management and control in winding density measurement of cheese yarn packages, a method for measuring the winding density of cheese packages was proposed based on the rapid scanning of laser displacement sensors for data collection and for establishing a mathematical model. By controlling the sampling distance and scanning path and range, the original point set reflecting the texture characteristics and the trace of the yarn in the cheese package was obtained. Based on the characteristics of different noise points and statistics theory, constraints were added to the original point set for preprocessing. After the point set was treated using the least square fitting and rotating surface equation, a high-precision mathematical model of the surface profile of the cheese yarn package was constructed, and the volume of the yarn was obtained through triple integration so as to calculate the accurate winding density. The experimental results show that the relative error of measurement can be controlled within 2.5%, the standard deviation is 0.069%, the efficiency is high, and the performance is obviously better than the existing methods in the industry.

Key words: cheese package, winding density, laser measurement, mathematical modeling, data noise reduction, intelligent dyeing factory

中图分类号: 

  • TS19

图1

筒子纱数字化扫描装置 1—底座; 2—控制箱; 3—侧导轨; 4—侧面激光位移传感器(S-LDS); 5—支撑架; 6—上导轨;7—上激光位移传感器(U-LDS); 8—激光扫描线;9—纱筒; 10—纱线; 11—筒子纱夹具(安装有质量仪器);12—下激光位移传感器(D-LDS); 13—下导轨。"

图2

筒子纱卷绕密度自动测量流程图"

图3

原始点集总图"

图4

原始点集细节图"

图5

样品示意图"

表1

原始点集中纱筒点、重合点与建模点交界处的数据"

上激光位移传感器(U-LDS) 下激光位移传感器(D-LDS) 侧面激光位移传感器(S-LDS)
距离
(x值)/cm
测量值
(z值)/cm
差值/
cm
距离
(x值)/cm
测量值
(z值)/cm
差值/
cm
距离
(z值)/cm
测量值
(x值)/cm
差值/
cm





2.588 1.402 1.428 2.577 -15.484 0.224 -2.477 9.662 -0.056
2.687 -0.026 -0.014 2.677 -15.708 4.102 -2.577 9.718 -0.084
2.787 -0.012 0.700 2.777 -19.810 -3.234 -2.676 9.802 -0.070
2.887 -0.712 0.028 2.877 -16.576 0.182 -2.776 9.872 -0.056
2.987 -0.740 0.070 2.977 -16.758 -0.028 -2.876 9.928 -0.028
3.087 -0.810 0.630 3.077 -16.730 -0.882 -2.976 9.956 -0.014
3.186 -1.440 -0.112 3.176 -15.848 0.084 -3.076 9.970 -0.056



3.286 -1.328 0.042 3.276 -15.932 0.042 -3.175 10.026 -0.014
3.386 -1.370 -0.014 3.376 -15.974 -0.014 -3.275 10.040 0.028
3.486 -1.356 -0.028 3.476 -15.960 0.028 -3.375 10.012 0.000
3.586 -1.328 -0.014 3.575 -15.988 0.014 -3.475 10.012 -0.014
3.685 -1.314 0.000 3.675 -16.002 0.014 -3.574 10.026 0.000
3.785 -1.314 -0.042 3.775 -16.016 0.028 -3.674 10.026 -0.028
3.885 -1.272 -0.014 3.875 -16.044 0.000 -3.774 10.054 0.014
3.985 -1.258 0.014 3.975 -16.044 -0.014 -3.874 10.040 -0.014
4.085 -1.272 0.000 4.074 -16.030 0.000 -3.974 10.054 0.028
4.184 -1.272 -0.014 4.174 -16.030 0.000 -4.073 10.026 0.014

图6

差值的概率分布直方图"

图7

建模示意图"

表2

行业方法与本文方法的实验对比结果"

样品
编号
样品的卷绕密度精确值/
(g·cm-3)
本文方法 行业通用方法
卷绕密度/(g·cm-3) 相对误差/% 卷绕密度/(g·cm-3) 相对误差/%
a 3.61×10-1 3.687×10-1 2.13 3.349×10-1 7.23
b 4.11×10-1 4.066×10-1 1.07 3.821×10-1 7.03

表3

同一样品的重复测量数据"

测量序号 卷绕密度/(g·cm-3) 测量序号 卷绕密度/(g·cm-3)
1 3.689×10-1 6 3.694×10-1
2 3.700×10-1 7 3.694×10-1
3 3.679×10-1 8 3.683×10-1
4 3.697×10-1 9 3.688×10-1
5 3.698×10-1 10 3.697×10-1
[1] 高晓艳, 王晓, 张小芳. 毛/涤混纺筒纱染色工艺探讨[J]. 毛纺科技, 2016,44(6):41-45.
GAO Xiaoyan, WANG Xiao, ZHANG Xiaofang. Research on dyeing of wool/polyester blended yarn[J]. Wool Textile Journal, 2016,44(6):41-45.
[2] 刘幸乐, 姚继明, 侯贺刚, 等. 纱线线密度与染色槽数对靛蓝上染率的影响[J]. 纺织学报, 2016,37(6):91-94.
LIU Xingle, YAO Jiming, HOU Hegang, et al. Effect of yarn density and dyeing vat on dye uptake of indigo[J]. Journal of Textile Research, 2016,37(6):91-94.
[3] 华一志. 筒子染色文献综述(二):染液流速、升温速度、筒子纱密度、吸收曲线形状及染料种类对筒子纱匀染的影响[J]. 针织工业, 1984(1):48-57.
HUA Yizhi. A review of cheese dyeing literature (Ⅱ): the effects of dye liquor flow rate, heating rate, cheese yarn density, absorption curve shape and type of dye on package dye[J]. Knitting Industries, 1984(1):48-57.
[4] RANA Sohel. Calculation of package density in yarn dyeing[EB/OL].( 2015 -04-16)[2015-07-10]. https://textilecalculation.blogspot.com/2015/07/calculation-of-package-density-in-yarn.html.
[5] 姚俊红. 络筒机用计长仪的研制[J]. 纺织学报, 2012,33(9):126-129.
YAO Junhong. Research and development of yarn length recorder for cone winding[J]. Journal of Textile Research, 2012,33(9):126-129.
[6] 江珊, 凌文漪, LUBO Hes, 等. 一种新型筒子纱硬度测试方法及其应用[J]. 上海纺织科技, 2015,43(10):90-93.
JIANG Shan, LING Wenyi, LUBO Hes, et al. A new testing method of cheese hardness and its applica-tions[J]. Shanghai Textile Science & Technology, 2015,43(10):90-93.
[7] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020,41(6):141-146.
ZHANG Jianxin, LI Qi. Online cheese package yarn density detection system based on machine vision[J]. Journal of Textile Research, 2020,41(6):141-146.
[8] 张建新, 李琦, 申雪韵. 一种筒子纱密度在线检测装置:201811633274.9[P]. 2019 -03-26.
ZHANG Jianxin, LI Qi, SHEN Xueyun. An online detection device for cheeses density:201811633274.9[P]. 2019 -03-26.
[9] QI Zhaoshuai, WANG Zhao, HUANG Junhui, et al. Invalid-point removal based on epipolar constraint in the structured-light method[J]. Optics and Lasers in Engineering, 2018,105:173-181.
[10] 吴尚, 齐琳, 周双喜, 等. 非接触式测量获取背部图形的拟合及其验证[J]. 纺织学报, 2018,39(4):111-115.
WU Shang, QI Lin, ZHOU Shuangxi, et al. Fitting and verifying of males' back graphics measured by non-contact scanner[J]. Journal of Textile Research, 2018,39(4):111-115.
[11] YAN Pang, WILLIAM Mac Kunis. Asymptotic tracking for an osprey fixed-wing aircraft via nonlinear generalized minimum variance control[J]. Journal of Aerospace Engineering, 2020. DOI: 10.1061/(ASCE)AS.1943-5525.0001121.
pmid: 11540474
[12] 唐家德. 基于MATLAB的非线性曲线拟合[J].计算机与现代化, 2008(6):15-19.
TAN Jiade. Nonlinear curve fitting based on matlab[J]. Computer and Modernization, 2008(6):15-19.
[13] CASCIOLA G, ROMANI L. A newton-type method for constrained least-squares data-fitting with easy-to-control rational curves[J]. Journal of Computational and Applied Mathematics, 2009,223(2):672-692.
[14] 林景星. 贝塞尔公式计算实验标准差的应用探讨[C]//江苏省计量测试学会. 华东华南计量学术交流研讨会论文集. 南京:江苏省计量测试学会, 2012: 249-250.
LIN Jingxing. Discussion on the application of bessel formula to calculate experimental standard deviation[C]//Jiangsu Society for Measurement. Proceedings of East China South China Metrology Academic Exchange Symposium. Nanjing: Jiangsu Society for Measurement, 2012: 249-250.
[15] ALIREZA Khani, STEPHEN D Boyles. An exact algorithm for the mean-standard deviation shortest path problem[J]. Transportation Research Part B: Methodological, 2015,81(1):252-266.
[1] 彭来湖, 祝孝裕, 张少民, 胡旭东. 筒子纱包装自动配重方法研究[J]. 纺织学报, 2020, 41(06): 147-152.
[2] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[3] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[4] 蔡逸超, 周晓, 宋明峰, 牟新刚. 应用多尺度多方向模板卷积的筒子纱缺陷检测[J]. 纺织学报, 2019, 40(04): 152-157.
[5] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[6] 蔡欣 李佩. 宋代绞经花纱织造工艺及其数学建模[J]. 纺织学报, 2016, 37(11): 42-47.
[7] 聂宇思 阎玉秀 金子敏 陶建伟. 织物表面空气摩擦阻力数学建模[J]. 纺织学报, 2016, 37(10): 50-55.
[8] 廉志军;潘菊芳;江渊;庄小雄. 筒子纱染色涤纶纤维表面杂质及对策[J]. 纺织学报, 2010, 31(6): 90-94.
[9] 江渊;潘菊芳;廉志军;徐憬. 涤纶纤维筒子染色过程中白色粉末性质的探讨[J]. 纺织学报, 2010, 31(5): 24-29.
[10] 唐蕾;单忠德;吴双峰;郭瑞峰;. 筒子纱染色粉状染料自动配送系统新进展[J]. 纺织学报, 2010, 31(12): 143-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!