纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 122-129.doi: 10.13475/j.fzxb.20200603408

所属专题: 阻燃纤维及纺织品

• 染整与化学品 • 上一篇    下一篇

高效无卤阻燃棉织物的制备及其结构与性能

马亚男1, 沈军炎1, 骆晓蕾1, 张聪1, 尚小磊1, 刘琳1(), KRUCINSKA Izabella2, 姚菊明1,3   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.罗兹技术大学 材料技术与纺织设计学院, 波兰 罗兹 90-924
    3.宁波大学, 浙江 宁波 315211
  • 收稿日期:2020-06-12 修回日期:2020-12-04 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 刘琳
  • 作者简介:马亚男(1993—),女,硕士。主要研究方向为纤维素基功能阻燃材料。
  • 基金资助:
    浙江省“万人计划”创新领军人才专项(111131A4E19003);国家重点研发计划项目(2016YFE0131400);国家自然科学基金面上项目(51672251)

Preparation and properties of high efficiency halogen-free flame-retardant cotton fabrics

MA Ya'nan1, SHEN Junyan1, LUO Xiaolei1, ZHANG Cong1, SHANG Xiaolei1, LIU Lin1(), KRUCINSKA Izabella2, YAO Juming1,3   

  1. 1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Faculty of Material Technologies and Textile Design, Lodz University of Technology, Lodz 90-924, Poland
    3. Ningbo University, Ningbo, Zhejiang 315211, China
  • Received:2020-06-12 Revised:2020-12-04 Online:2021-03-15 Published:2021-03-17
  • Contact: LIU Lin

摘要:

为了提高棉织物的阻燃效果与耐久性,以磷酸二氢铵(NH4H2PO4)和尿素为原料,经磷酸化改性制备无卤耐久阻燃棉织物。通过研究原料物质的量比、反应时间、反应温度对阻燃棉织物接枝率与白度的影响,确定了最佳工艺条件:脱水葡萄糖单元(AGU)、NH4H2PO4与尿素的量比为1∶2.5∶15,反应温度为130 ℃,反应时间为90 min。测试了阻燃棉织物的阻燃性能与耐水洗性能及力学性能等。结果表明:阻燃棉织物的极限氧指数(LOI)由原棉织物的18%提高到50.9%,达到不燃级别;经800 ℃热分解,残炭量上升到40.0%左右,具有优异的热稳定性;经30次标准洗涤测试后,LOI值仍可达到28.5%,表现出较好的耐洗涤性;该法实现了棉织物的高效耐久阻燃。

关键词: 磷酸二氢铵, 阻燃整理, 棉织物, 磷酸化, 无卤阻燃, 阻燃织物

Abstract:

In order to improve the flame retardancy and durability of cotton fabrics, halogen-free durable flame retardant cotton fabrics were prepared by applying phosphorylation modification with NH4H2PO4 and urea as the raw materials. The effects of the molar ratio of the raw materials, reaction time and reaction temperature on the grafting rate and whiteness of flame-retardant cotton fabrics were studied. The optimum finishing process was identified to be 90 min reaction time, 130 ℃ reaction temperature, 1∶2.5∶15 raw material mole ratio among dehydrated glucose unit (AGU), NH4H2PO4 and urea. The flame-retardancy, washing resistance and mechanical properties of fabrics were studied The limit oxygen index (LOI) of the flame retardant cotton fabric was increased from 18% to 50.9%, reaching the noncombustible level. After 800 ℃ thermal decomposition, the carbon residue increased to 40.0%, showing excellent thermal stability. At the same time, after 30 standard washing tests, the LOI value can still reach 28.5%, which shows good washing resistance. This method can be used to achieve efficient and durable flame-retardancy of cotton fabrics.

Key words: ammonium dihydrogen phosphate, flame-retardant finishing, cotton fabric, phosphorylation, halogen-free flame retardant, flame-retardant fabric

中图分类号: 

  • TS195.5

图1

阻燃棉织物的制备流程图"

图2

工艺因素对棉织物接枝率的影响"

图3

阻燃整理前后棉织物的红外光谱图"

图4

棉织物的SEM照片(×1 500)"

图5

棉织物和阻燃棉织物的LOI值 注:0#为原棉织物;1#~5#分别表示n(NH4H2PO4):n(AGU)为1∶1,1.5∶1,2∶1;2.5∶1,3∶1的阻燃棉织物。下同。"

图6

原棉织物和阻燃棉织物的热稳定曲线"

表1

阻燃棉织物水洗后的接枝率及阻燃性能"

水洗次数 接枝率/% LOI值/%
0 21.01 50.9
10 19.51 31.8
20 18.02 29.1
30 17.36 28.5
40 16.46 24.7
50 15.82 20.8

图7

在不同温度下原棉织物与阻燃棉织物热降解产物的红外谱图"

图8

原棉织物和阻燃棉织物热降解产物随时间的吸光强度变化"

图9

原棉织物和阻燃棉织物的力学性能"

[1] LI Yuchin, SCHULZ Jessica, MANNEN Sarah, et al. Flame retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric[J]. ACS Nano, 2010,4(6):3325-3337.
doi: 10.1021/nn100467e pmid: 20496883
[2] 李强林, 黄方千, 肖秀婵, 等. 新型无卤聚合物阻燃剂的研究进展[J]. 纺织学报, 2019,40(4):177-184.
LI Qianglin, HUANG Fangqian, XIAO Xiuchan, et al. Review on novel halogen-free polymer flame retardants[J]. Journal of Textile Research, 2019,40(4):177-184.
[3] 张健, 李和国, 白书培, 等. 棉织物的常压等离子体拒水改性处理[J]. 纺织学报, 2011,32(4):85-90.
ZHANG Jian, LI Heguo, BAI Shupei, et al. Water repellent treatment of cotton fabrics by atmospheric plasma[J]. Journal of Textile Research, 2011,32(4):85-90.
[4] SHI Xiaohui, XU Yingjun, LONG Jiawei, et al. Layer-by-layer assembled flame-retardant architecture toward high-performance carbon fiber composite[J]. Chemical Engineering Journal, 2018,353:550-558.
[5] 陈威, 关晋平, 陈国强, 等. 静电层层自组装法整理多巴胺改性涤/棉混纺织物的阻燃性能[J]. 纺织学报, 2017,38(9):94-100.
CHEN Wei, GUAN Jinping, CHEN Guoqiang, et al. Flame retardant properties of dopamine modified polyester/cotton blended fabric treated by electrostatic layer-by-layer self-assembly[J]. Journal of Textile Research, 2017,38(9):94-100.
[6] LI Yingzhan, GRISHKEWICH Nathan, LIU Lingli, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal, 2019,366(15):531-538.
[7] 周青青, 陈嘉毅, 祁珍明, 等. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020,41(5):112-120.
ZHOU Qingqing, CHEN Jiayi, QI Zhenming, et al. Preparation and characterization of flame retardant and antibacterial cotton fabric[J]. Journal of Textile Research, 2020,41(5):112-120.
[8] CHENG Xianwei, TANG Rencheng, GUAN Jinping, et al. An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach[J]. Progress in Organic Coatings, 2020,141:105539.
[9] SHEN Zhenqi, CHEN Li, LIN Lin, et al. Synergistic effect of layered nanofillers in intumescent flame-retardant EPDM: montmorillonite versus layered double hydroxides[J]. Industrial & Engineering Chemistry Research, 2013,52(25):8454-8463.
[10] CHENG Luyao, WU Weihong, MENG Weihua, et al. Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants[J]. Journal of Applied Polymer Science, 2018,135(33):46601.
[11] XU Lijin, WANG Wei, YU Dan. Preparation of a reactive flame retardant and its finishing on cotton fabrics based on click chemistry[J]. RSC Advances, 2017,7(4):2044-2050.
[12] 王欣欣, 何文涛, 徐国敏, 等. 氨基碳纳米管/DOPO衍生物的协效阻燃及其对尼龙6性能的影响[J]. 高分子学报, 2019,50(4):419-428.
WANG Xinxin, HE Wentao, XU Guomin, et al. Synergistic flame retardancy of amine-based multi-walled carbon nanotubes/DOPO derivatives and its effect on the properties of nylon 6[J]. Acta Polymerica Sinica, 2019,50(4):419-428.
[13] GHANADPOUR Maryam, CAROSIO Federico, LARSSON Pertomas, et al. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials[J]. Biomacromolecules, 2015,16(10):3399-3410.
doi: 10.1021/acs.biomac.5b01117 pmid: 26402379
[14] DASH Rajalaxmi, ELDER Thomas, RAGAUSKAS Arthurj. Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation[J]. Cellulose, 2012,19(6):2069-2079.
doi: 10.1007/s10570-012-9769-2
[15] ZHANG Lianwei, WANG Ruijia, LIU Rui, et al. Rapid capture and visual detection of copper ions in aqueous solutions and biofluids using a novel cellulose-Schiff base[J]. Cellulose, 2018,25(12):6947-6961.
[16] 孙玉发, 周向东. 棉用新型含磷氮阻燃剂的合成及其应用[J]. 纺织学报, 2019,40(12):79-85.
SUN Yufa, ZHOU Xiangdong. Synjournal and application of a novel phosphorous nitrogen flame retardant for cotton[J]. Journal of Textile Research, 2019,40(12):79-85.
[17] ZHANG Lianwei, WANG Ruijia, LIU Rui, et al. Rapid capture and visual detection of copper ions in aqueous solutions and biofluids using a novel cellulose-Schiff base[J]. Cellulose, 2018,25(12):6947-6961.
[18] SUFLET Danamihaela, CHITANU Gabriellecharlotte, POPA Valentini. Phosphorylation of polysaccharides: new results on synjournal and characterisation of phosphorylated cellulose[J]. Reactive and Functional Polymers, 2006,66(11):1240-1249.
[19] 曾倩, 任元林. 纤维织物阻燃研究进展[J]. 纺织科学与工程学报, 2018,35(1):159-163.
ZENG Qian, REN Yuanlin. Research progress of fiber fabric flame retardant[J]. Journal of Textile Science & Engineering, 2018,35(1):159-163.
[20] FENG Yajuan, ZHOU Yang, LI Daikun, et al. A plant-based reactive ammonium phytate for use as a flame-retardant for cotton fabric[J]. Carbohydrate Polymers, 2017,175:636-644.
pmid: 28917912
[21] XU Fang, ZHONG Ling, ZHANG Cheng, et al. Novel high-efficiency casein-based P-N-containing flame retardants with multiple reactive groups for cotton fabrics[J]. ACS Sustainable Chemistry & Engineering, 2019,7(16):13999-14008.
[22] XU Fang, ZHONG Ling, XU Yuan, et al. Highly efficient flame-retardant kraft paper[J]. Journal of Materials Science, 2019,54(2):1884-1897.
[1] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[2] 武守营, 张琳萍, 徐红, 钟毅, 毛志平. 金属配合物催化棉织物低温漂白研究进展[J]. 纺织学报, 2021, 42(03): 27-35.
[3] 郝尚, 谢源, 翁佳丽, 张维, 姚继明. 溶解刻蚀辅助构建棉织物超疏水表面[J]. 纺织学报, 2021, 42(02): 168-173.
[4] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[5] 侯文双, 闵洁, 纪峰, 张建祥, 苏梦, 何瑞娴. 织物紧度和抗皱整理工艺对纯棉机织物折皱回复性的影响[J]. 纺织学报, 2021, 42(01): 118-124.
[6] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[7] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[8] 杨雅茹, 沈小军, 唐柏林, 牛梅. 超高分子量聚乙烯纤维的无卤阻燃整理[J]. 纺织学报, 2020, 41(11): 109-115.
[9] 张艳艳, 詹璐瑶, 王培, 耿俊昭, 付飞亚, 刘向东. 用无机纳米粒子制备耐久性抗菌棉织物的研究进展[J]. 纺织学报, 2020, 41(11): 174-180.
[10] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[11] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[12] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[13] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[14] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[15] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!