纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 175-180.doi: 10.13475/j.fzxb.20200203806

• 综合述评 • 上一篇    下一篇

聚合物基石墨烯复合纤维及其纺织品研究进展

姜兆辉1,2, 李永贵2(), 杨自涛3, 郭增革1, 张战旗4, 齐元章4, 金剑5   

  1. 1.山东理工大学 鲁泰纺织服装学院, 山东 淄博 255000
    2.闽江学院 福建省新型功能性纺织纤维及材料重点实验室, 福建 福州 350108
    3.武夷学院 福建省生态产业绿色技术重点实验室, 福建 武夷山 354300
    4.鲁丰织染有限公司, 山东 淄博 255100
    5.中国纺织科学研究院有限公司, 北京 100025
  • 收稿日期:2020-02-19 修回日期:2020-08-17 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 李永贵
  • 作者简介:姜兆辉(1982—),男,副教授,博士。主要研究方向为功能纤维材料。
  • 基金资助:
    山东省重点研发计划项目(2019RKB01208);淄博市校城融合发展计划项目(2018ZBXC474);福建省生态产业绿色技术重点实验室开放基金资助项目(WYKF2019-5);福建省新型功能性纺织纤维及材料重点实验室开放基金项目(FKLTFM1820)

Research progress in graphene/polymer composite fibers and textiles

JIANG Zhaohui1,2, LI Yonggui2(), YANG Zitao3, GUO Zengge1, ZHANG Zhanqi4, QI Yuanzhang4, JIN Jian5   

  1. 1. Lutai School of Textile and Apparel, Shandong University of Technology, Zibo, Shandong 255000, China
    2. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    3. Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian 354300, China
    4. Lufeng Company Limited, Zibo, Shandong 255100, China
    5. China Textile Academy, Beijing 100025,China
  • Received:2020-02-19 Revised:2020-08-17 Online:2021-03-15 Published:2021-03-17
  • Contact: LI Yonggui

摘要:

针对高纯石墨烯纤维可纺性差、成本高及分散难等问题,归纳了石墨烯的功能化改性方法,并对聚合物基石墨烯及其纺织品的研究进展进行综述。通过石墨烯与聚合物基体相的相互作用分析,深入探讨石墨烯对聚合物基石墨烯纤维微结构的影响机制,提出聚合物基石墨烯纺织品开发面临的技术挑战和理论难题。研究表明,石墨烯的高导电性和聚合物基体的柔性赋予聚合物基石墨烯纤维良好的可编织性,可确保其在拉伸、扭转、冲击等条件下具有良好的电导率稳定性,有望加快柔性可穿戴纺织品的开发进程。最后指出,利用可控和可预测的加工技术,在解决石墨烯高效分散的基础上可解决石墨烯高成本的问题,是聚合物基石墨烯纺织品的重要研究方向。

关键词: 石墨烯复合纤维, 智能纺织品, 石墨烯改性, 超分子结构, 柔性可穿戴纺织品

Abstract:

In view of the poor spinnability, high cost and difficult dispersion of high-purity graphene fibers, functional modification methods of graphene are summarized, and the research progress in polymer-based graphene fibers and fabrics is reviewed. Based on the analysis of the interaction between graphene and polymer matrix, the mechanism of graphene effect on the microstructure of polymer-based graphene fibers is also discussed, and the technical challenges and theoretical problems in the development of polymer-based graphene textiles are put forward. This review indicates that due to the high conductivity of graphene and flexibility of polymer matrix, the polymer-based graphene fibers have good flexibility and weavability, ensuring their good conductivity under the conditions of tension, torsion, impact, and so on. This is expected to accelerate the development process of flexible, wearable and smart textiles. It is pointed out that in face of the high cost of graphene, using controllable and predictable processing technology to solve the high dispersion of graphene, to achieve the high-efficiency under the low addition of graphene and to reduce the high cost, is an important research direction of polymer-based graphene textiles.

Key words: graphene composite fiber, intelligent textiles, graphene modification, supramolecular structure, flexible wearable textiles

中图分类号: 

  • TQ317.2

图1

聚合物基石墨烯纤维制备方法"

[1] LEE K R, JANG S, JUNG I. Analysis of acoustical performance of bi-layer graphene and graphene-foam-based thermoacoustic sound generating devices[J]. Carbon, 2018,127:13-20.
[2] 张清华, 张殿波. 石墨烯与纤维的高性能化[J]. 纺织学报, 2016,37(10):145-152.
ZHANG Qinghua, ZHANG Dianbo. Graphene and enhanced fibers[J]. Journal of Textile Research, 2016,37(10):145-152.
[3] KUMAR M SWAMY B E K MOHAMMED ASIF M H M, et al. Preparation of alanine and tyrosine functionalized graphene oxide nanoflakes and their modified carbon paste electrodes for the determination of dopamine[J]. Applied Surface Science, 2017,399:411-419.
[4] 赵晓凤, 郑兵, 杨逢春, 等. 原位聚合制备石墨烯/PET及其性能研究[J]. 浙江理工大学学报(自然科学版), 2017,37(4):497-501.
ZHAO Xiaofeng, ZHENG Bing, YANG Fengchun, et al. Preparation of graphene/PET by in-situ polycondensation and study on its properties[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2017,37(4):497-501.
[5] XU Z, GAO C. Graphene fiber: a new trend in carbon fiber[J]. Materials Today, 2015,18(9):480-492.
[6] HAZARIKA A, DEKA B K, KIM D, et al. Microwave induced hierarchical iron-carbon nanotubes nanostructures anchored on polypyrrole/graphene oxidegrafted woven kevlar fiber[J]. Composites Science Technology, 2016,129:137-145.
[7] CHEN L, WEI F, LIU L, et al. Grafting of silane and graphene oxide onto pbo fibers: multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties[J]. Composites Science Technology, 2015,106:32-38.
[8] REN J S, WANG C X, ZHANG X, et al. Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide[J]. Carbon, 2017,111:622-630.
[9] BERENDJCHI A, KHAJAVI R, YOUSEFI A A, et al. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate[J]. Applied Surface Science, 2016,363:264-272.
[10] GUO J P, GUO H J, ZHOU W, ZHOU W, et al. Preparation of graphene/poly (p-phenylenebenzobisoxazole) composite fibers based on simultaneous zwitterion coating and chemical reduction of graphene oxide at room temperature[J]. RCS Advances, 2015 (5):88646-88654.
[11] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):170-177.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of graphene composite fibers and fabrics[J]. Journal of Textile Research, 2016,37(10):170-177.
[12] 梁红培, 王英波, 粟智, 等. 电纺制备明胶/壳聚糖/羟基磷灰石/氧化石墨烯抗菌复合纳米纤维的研究[J]. 无机材料学报, 2015,30(5):516-522.
LIANG Hongpei, WANG Yingbo, LI Zhi, et al. Electrospinning gelatin/chitosan/hydroxyapatite/graphene oxide composite nanofibers with antibacterial properties[J]. Journal of Inorganic Materials, 2015,30(5):516-522.
[13] KALANTARI B, MOJTAHEDI M R M, SHARIF F, et al. Flow-induced crystallization of polypropylene in the presence of graphene nanoplatelets and relevant mechanical properties in nanocompsoite fibres[J]. Composites Part A: Applied Science and Manufacturing, 2015,76:203-214.
[14] 沈宸, 陆云. 石墨烯/导电聚合物复合材料在超级电容器电极材料方面的研究进展[J]. 高分子学报, 2014 (10):1328-1341.
SHEN Chen, LU Yun. Progress in the research of graphene/conducting polymer composites for the application of supercapacitor electrode materials[J]. Acta Polymerica Sinica, 2014 (10):1328-1341.
[15] JIANG X P, REN Z L, FU Y F, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains[J]. ACS Applied Materials and Interfaces, 2019,11(40):37051-37059.
doi: 10.1021/acsami.9b11596 pmid: 31465197
[16] HAOY N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric joule heater with durable abrasion resistance via a spray coating route[J]. Industrial and Engineering Chemistry Research, 2018,57(40):13437-13448.
[17] YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018,6(47):12981-12991.
[18] MA R, KANG B, CHO S, et al. Extraordinarily high conductivity of stretchable fibers of polyurethane and silver nanoflowers[J]. ACS Nano, 2015 (9):10876-10886.
[19] YAN T, WANG Z, WANG Y Q, et al. Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors[J]. Materials and Design, 2018,143:214-223.
[20] WEISE B, STEINMANN W, BECKERS M, et al. Melt spinning of electrically capacitive fibers by addition of graphene multilayers[J]. International Textile Leader, 2015 (7):7-9.
[21] 胡洪亮, 张国. 石墨烯/超高分子量聚乙烯导电复合材料的电性能[J]. 高分子材料科学与工程, 2016,32(2):95-98.
HU Hongliang, ZHANG Guo. Electrical properties of graphene/ultrahigh molecular weight polyethylene composites[J]. Polymer Materials Science & Engineering, 2016,32(2):95-98.
[22] WEIR M P, JOHNSON D W, BOOTHROYD S C, et al. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites[J]. Acs Macro Letters, 2016,5(4):430-434.
[23] AVOLIO R, GENTILE G, AVELLA M, et al. Polymer-filler interactions in PET/CaCO3 nanocomposites:Chain ordering at the interface and physical properties[J]. European Polymer Journal, 2013,49:419-427.
[24] JIANG Z H, GUO Z G, PU C C, et al. Effect of coupling agent on crystallization and rheological properties of poly(ethylene terephthalate) composite masterbatches[J]. Polymer Composites, 2017,38(11):2358-2367.
[25] MA Q, MAO B, CEBE P. Chain confinement in electrospun nanocomposites: using thermal analysis to investigate polymer-filler interactions[J]. Polymer, 2011,52:3190-3200.
[26] CAI J Z, CHAWLA S, NARAGHI M. Microstructural evolution and mechanics of hot-drawn CNT-reinforced polymeric nanofibers[J]. Carbon, 2016,109:813-822.
[27] NAIN R, YADAY K, JASSALl M, et al. Aligned ZnO nanorods as effective reinforcing material for obtaining high performance polyamide fibers[J]. Composites Science and Technology, 2015,120:58-65.
[28] ZHANG W, NING N Y, GAO Y, et al. Stretching induced interfacial crystallization and property enhancement of poly(l-lactide)/single-walled carbon nanotubes fibers[J]. Composites Science and Technology, 2013,83:47-53.
[29] NING N Y, FU S R, ZHANG W, et al. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization[J]. Progress in Polymer Science, 2012,37:1425-1455.
[30] GAO Y, FU Q, NIU L Y, et al. Enhancement of the tensile strength in poly(p-phenylene sulfide) and multi-walled carbon nanotube nanocomposites by hot-stretching[J]. Journal of Materials Science, 2015,50(10):3622-3630.
[1] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[2] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[3] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[4] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[5] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[6] 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123.
[7] 吴荣辉, 马丽芸, 张一帆, 刘向阳, 于伟东. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49.
[8] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[9] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[10] 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88.
[11] 王勃翔 刘丽 路艳华 李金华 张松 汪刘才 韩思杰 刘禹辰 . 互穿聚合物网络温敏凝胶对棉织物液态水分传递的影响[J]. 纺织学报, 2018, 39(11): 79-84.
[12] 张岩 裴泽光 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(05): 25-31.
[13] 肖渊 刘金玲 申松 陈兰. 织物表面微滴喷射打印沉积过程试验研究[J]. 纺织学报, 2017, 38(05): 139-144.
[14] 蒋约林 吴金丹 何驹 葛华云 王际平. 氨基硅油整理法在温敏纺织品制备中的应用[J]. 纺织学报, 2015, 36(02): 86-91.
[15] 陈园园;杨斌;金子敏. 可控发光织物的研制及其亮度表征[J]. 纺织学报, 2008, 29(8): 38-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!