纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 190-196.doi: 10.13475/j.fzxb.20200307007

• 综合述评 • 上一篇    

人体轮廓机器视觉检测算法的研究进展

冯文倩1,2, 李新荣1,2(), 杨帅1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2020-03-26 修回日期:2020-12-03 出版日期:2021-03-15 发布日期:2021-03-17
  • 通讯作者: 李新荣
  • 作者简介:冯文倩(1996—),女,硕士生。主要研究方向为服装设备智能化。
  • 基金资助:
    国家重点研发计划项目(2018YFB1308801)

Research progress in machine vision algorithm for human contour detection

FENG Wenqian1,2, LI Xinrong1,2(), YANG Shuai1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tianjin 300387, China
  • Received:2020-03-26 Revised:2020-12-03 Online:2021-03-15 Published:2021-03-17
  • Contact: LI Xinrong

摘要:

为了更好地将轮廓视觉检测方法应用于非接触式二维人体围度测量,总结了近年来轮廓视觉检测的方法,包括基于边缘算子的检测、基于数学形态学的检测、基于水平集的主动轮廓模型的检测算法。通过实验效果图对比,重点评述了轮廓视觉检测方法的边缘清晰度、抗噪能力以及目标边缘定位能力,其中特别探讨了Canny边缘算子在优化与改进方面的研究进展。相关研究为实现背景和穿着复杂情况下的人体轮廓视觉检测提供了理论参考。最后阐述了人体轮廓视觉检测存在的挑战及机遇,指出人体轮廓视觉检测在非接触式二维人体围度尺寸测量方面具有很好的发展前景。

关键词: 机器视觉, 轮廓检测, 人体轮廓, 人体围度, 边缘算子, 主动轮廓模型

Abstract:

In order to better apply the contour vision detection method to non-contact two-dimensional body circumference measurement, the contour vision detection methods in recent years are reviewed, including edge operators based detection, mathematical morphology based detection, and level set detection algorithm of active contour model. Through the comparison of experimental renderings, the edge definition, anti-noise ability and target edge positioning ability of the contour visual detection method are re-evaluated. In particular, the research progress of Canny edge operator in optimization and improvement is discussed. The relevant researches provide a theoretical reference for carrying out the visual detection of human contours under complicated background and wearing conditions. Finally, the challenges and opportunities of human body contour machine vision detection are described, and it is pointed out that human contour vision detection has a good development prospect in non-contact two-dimensional body circumference measurement.

Key words: machine vision, contour detection, human contour, body circumference, edge operator, active contour model

中图分类号: 

  • TP391.8

图1

不同边缘算子的检测效果"

图2

多方向结构元素图"

图3

不同背景下不同方法的实验对比"

[1] 邹柏贤, 林京壤. 图像轮廓提取方法研究[J]. 计算机工程与应用, 2008(25):161-165.
doi: 10.3778/j.issn.1002-8331.2008.25.049
ZOU Baixian, LIN Jingrang. Research on image contour extraction[J]. Computer Engineering and Applications, 2008(25):161-165.
doi: 10.3778/j.issn.1002-8331.2008.25.049
[2] DUAN Hongyan, SHAO Hao, ZHANG Shuzhen, et al. An improved algorithm for image edge detection based on canny operator[J]. Journal of Shanghai Jiaotong University, 2016,50(12):1861-1865.
[3] 覃禹舜. 基于深度神经网络的图像边缘检测算法研究[D]. 成都: 西南交通大学, 2019: 7-16.
QIN Yushun. Research on image edge detection algorithm based on deep neural network[D]. Chengdu: Southwest Jiaotong University, 2019: 7-16.
[4] 胡志斌, 邓彩霞, 邵云虹, 等. 二进小波与改进的形态学融合的边缘检测算法[J]. 计算机工程与设计, 2020,41(1):190-196.
HU Zhibin, DENG Caixia, SHAO Yunhong, et al. Edge detection algorithm fusion of binary wavelet and improved morphology[J]. Computer Engineering and Design, 2020,41(1):190-196.
[5] 邹昆, 马黎, 李蓉, 等. 基于图像的非接触式人体参数测量方法[J]. 计算机工程与设计, 2017,38(2):511-516.
ZOU Kun, MA Li, LI Rong, et al. Image-based non-contacting anthropometric method[J]. Computer Engineering and Design, 2017,38(2):511-516
[6] NAVDEEP, GOYAL SONAL, RANI Asha, et al. An improved local binary pattern based edge detection algorithm for noisy images[J]. Journal of Intelligent and Fuzzy Systems, 2019,36(3):2043-2054.
doi: 10.3233/JIFS-169916
[7] 刘晓刚, 闫红方, 张荣. 基于形态学多尺度多结构的熔池图像边缘检测[J]. 热加工工艺, 2019,48(5):216-219.
LIU Xiaogang, YAN Hongfang, ZHANG Rong. Edge detection of molten pool image based on morphology multi-scale and multi-structure[J]. Thermal Processing Technology, 2019,48(5):216-219.
[8] YU Haiping, HE Fazhi, PAN Yiteng. A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation[J]. Multimedia Tools and Applications, 2020,79(6):5743-5765.
doi: 10.1007/s11042-019-08493-1
[9] 刘其思, 徐平华, 周佳, 等. 基于变分水平集的服饰图案轮廓提取[J]. 服装学报, 2016,1(5):482-486.
LIU Qisi, XU Pinghua, ZHOU Jia, et al. Contour extraction of clothing patterns based on variational level set[J]. Journal of Clothing Research, 2016,1(5):482-486.
[10] BIAN Guiping, QIN Yilin. An adaptive edge-detection method based on Canny algorithm[J]. Electronic Design Engineering, 2017,25(10):53-56,60.
[11] 于晓海, 张阳, 须颖. 一种改进自适应阈值的Canny算法[J]. 机械与电子, 2020,38(1):6-9.
YU Xiaohai, ZHANG Yang, XU Ying. A Canny algorithm with improved adaptive threshold[J]. Mechanical and Electronic, 2020,38(1):6-9.
[12] ZHANG Weichuan, ZHAO Yali, BRECKON TP, et al. Noise robust imageedge detection based upon the automatic anisotropic Gaussian kernels[J]. Pattern Recognition, 2016,63(8):193-205.
doi: 10.1016/j.patcog.2016.10.008
[13] QIN Wei, LI Juan. The application study on the improved Canny algorithm for edge detection in strain gauge image[J]. MATEC Web of Conferences, 2017,128(2):152-156.
[14] XU Dongqing, WANG Xiuyou, SUN Gang, et al. Towards a novel image denoising method with edge-preserving sparse representation based on laplacian of B-spline edge-detection[J]. Multimedia Tools and Applications, 2017,76(17):17839-17854.
doi: 10.1007/s11042-015-3097-0
[15] XU Q, VARADARAJAN S, CHAKRABARTI C, et al. A distributed canny edge detector: algorithm and FPGA implementation[J]. IEEE Transactions on Image Processing, 2014,23(7):2944-2960.
doi: 10.1109/tip.2014.2311656 pmid: 24983098
[16] 杨静娴, 任小洪. 基于图像处理的白酒酒花轮廓检测[J]. 食品与机械, 2019,35(12):52-55,145.
YANG Jingxian, REN Xiaohong. Contour detection of white wine hops based on image processing[J]. Food and Machinery, 2019,35(12):52-55,145.
[17] 齐英兰. 应用自适应滤波与阈值迭代的原棉杂质视觉检测方法[J]. 毛纺科技, 2020,48(2):73-77.
QI Yinglan. Visual detection method of raw cotton impurities using adaptive filtering and threshold iteration[J]. Wool Textile Journal, 2020,48(2):73-77.
[18] 李东兴, 高倩倩, 张起, 等. 融合数学形态学滤波技术的边缘检测算法[J]. 山东理工大学学报(自然科学版), 2018,32(6):1-5.
LI Dongxing, GAO Qianqian, ZHANG Qi, et al. Edge detection algorithm incorporating mathematical morphology filtering technology[J]. Journal of Shandong University of Technology (Natural Science Edition), 2018,32(6):1-5.
[19] 庞明明, 安建成. 融合模糊LBP和Canny边缘的图像分割[J]. 计算机工程与设计, 2019,40(12):3533-3537.
PANG Mingming, AN Jiancheng. Image segmentation based on fuzzy LBP and Canny edges[J]. Computer Engineering and Design, 2019,40(12):3533-3537.
[20] KOTHAPALLI Vignesh, ARORA Shaveta, HANMANDLU Madasu. Edge detection using fractional derivatives and information sets[J]. Journal of Electronic Imaging, 2018,27(5):51-79.
[21] MAKSIMOVIC Vladimir, JAKSIC Branimir. Analysis of edge detection on compressed images with different complexities[J]. Journal of Acta Polytechnica Hungarica, 2020,17(4):123-143.
[22] THIRUMAVALAVAN S, JAYARAMAN S. An improved teaching learning based robust edge detection algorithun for noisy images[J]. Journal of Advanced Research, 2016,7(6):979-989.
doi: 10.1016/j.jare.2016.04.002 pmid: 27857845
[23] 李怡燃, 庞春颖, 常知强. Sobel算子和形态学相结合的尿液试纸条边缘检测算法研究[J]. 生物医学工程研究, 2019,38(1):43-47.
LI Yiran, PANG Chunying, CHANG Zhiqiang. Study on edge detection algorithm of urine test strip based on Sobel operator and morphology[J]. Journal of Biomedical Engineering Research, 2019,38(1):43-47.
[24] 王蔚, 王晓凯, 龚真, 等. 基于形态学的机器视觉玻璃切割边缘提取[J]. 测试技术学报, 2020,34(1):22-27.
WANG Wei, WANG Xiaokai, GONG Zhen, et al. Morphology-based extraction of cutting edges in glass for machine vision[J]. Journal of Test and Measurement Technology, 2020,34(1):22-27.
[25] 鄂那林, 王芬芬. 基于多结构元素的形态学边缘检测算法[J]. 科技信息, 2013(11): 73, 111.
E Nalin, WANG Fenfen. Morphological edge detection algorithm based on multiple structural elements [J]. Science and Technology Information, 2013(11): 73, 111.
[26] 吴朔媚, 韩明, 王敬涛. 基于多尺度多方向结构元素的形态学图像边缘检测算法[J]. 量子电子学报, 2017,34(3):278-285.
WU Shuomei, HAN Ming, WANG Jingtao. Morphological image edge detection algorithm based on multi-scale and multi-directional structural elements[J]. Chinese Journal of Quantum Electronics, 2017,34(3):278-285.
[27] 秦玮, 陈希, 马原原, 等. 基于数学形态学的边缘检测算法分析[J]. 信息技术, 2019,43(11):33-36.
QIN Wei, CHEN Xi, MA Yuanyuan, et al. Analysis of edge detection algorithm based on mathematical morphology[J]. Information Technology, 2019,43(11):33-36.
[28] 吴一全, 宋昱, 周怀春. 基于各向异性数学形态学的火焰图像边缘检测[J]. 仪器仪表学报, 2013,34(8):1818-1825.
WU Yiquan, SONG Yu, ZHOU Huaichun. Edge detection of flame image based on anisotropic mathematical morphology[J]. Chinese Journal of Scientific Instrument, 2013,34(8):1818-1825.
[29] 罗进华, 蒋锦朋, 朱培民. 基于数学形态学的侧扫声呐图像轮廓自动提取[J]. 海洋学报, 2016,38(5):150-157.
LUO Jinhua, JIANG Jinpeng, ZHU Peimin. Automatic extraction of contours of sidescan sonar images based on mathematical morphology[J]. Chinese Journal of Oceanology, 2016,38(5):150-157.
[30] 安立新, 李炜. 一种带有印花图案服装图像的轮廓提取[J]. 纺织学报, 2013,34(3):132-136.
AN Lixin, LI Wei. Contour extraction of a garment image with printed patterns[J]. Journal of Textile Research, 2013,34(3):132-136.
[31] 王文豪, 严云洋, 姜明新, 等. 一种去噪声的轮廓提取算法[J]. 江苏科技大学学报(自然科学版), 2017,31(4):519-524.
WANG Wenhao, YAN Yunyang, JIANG Mingxin, et al. A denoising contour extraction algorithm[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017,31(4):519-524.
[32] 王涛, 潘国富, 张济博. 基于K-means聚类与数学形态学的侧扫声呐图像目标轮廓自动提取方法[J]. 海洋科学, 2019,43(8):80-85.
WANG Tao, PAN Guofu, ZHANG Jibo. Automatically extracting target contours of side-scan sonar images based on K-means clustering and mathematical morphology[J]. Marine Science, 2019,43(8):80-85.
[33] ENDO Hiromu, TAGUCHI Akira. Color image enhancement method with variable emphasis degree[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018,E101A(4):713-722.
[34] 刘千, 葛阿雷, 史伟. 形态学与RCF相结合的唐卡图像边缘检测算法[J]. 计算机应用与软件, 2019,36(6):196-201,242.
LIU Qian, GE Alei, SHI Wei. Tangka image edge detection algorithm combining morphology and RCF[J]. Journal of Computer Applications and Software, 2019,36(6):196-201,242.
[35] KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988,1(4):321-331.
[36] 翁桂荣, 何志勇. 基于自适应符号函数的主动轮廓模型[J]. 软件学报, 2019,30(12):3892-3906.
WENG Guirong, HE Zhiyong. Active contour model based on adaptive symbol function[J]. Journal of Software, 2019,30(12):3892-3906.
[37] WANG Xianghai, LI Wei, ZHANG Chong, et al. An adaptable active contour model for medical image segmentation based on region and edge information[J]. Multimedia Tools and Applications, 2019,78(23):33921-33937.
doi: 10.1007/s11042-019-08073-3
[38] 赵方珍, 罗兰花, 梁海英, 等. 改进的水平集方法及其在图像分割中的应用[J]. 数学的实践与认识, 2019,49(22):154-162.
ZHAO Fangzhen, LUO Lanhua, LIANG Haiying, et al. Improved level set method and its application in image segmentation[J]. Mathematics in Practice and Theory, 2019,49(22):154-162.
[39] 韩红伟, 唐静, 洪姗. 基于局部统计信息的主动轮廓模型[J]. 云南民族大学学报(自然科学版), 2017,26(3):241-246,257.
HAN Hongwei, TANG Jing, HONG Shan. Active contour model based on local statistical information[J]. Journal of Yunnan University Nationalities (Natural Science Edition), 2017,26(3):241-246,257.
[40] ZOU Kun, MA Li, FU Yu, et al. Anthropometry oriented local contour extraction based on unclosed snake model[J]. Journal of Computer-Aided Design and Computer Graphics, 2018,30(1):147-154.
[1] 田宇航, 王绍宗, 张文昌, 张倩. 基于机器视觉的单组分染液浓度快速检测方法[J]. 纺织学报, 2021, 42(03): 115-121.
[2] 朱世根, 杨宏贤, 白云峰, 丁浩, 朱巧莲. 长条状细薄带钩零件变形自动检测系统[J]. 纺织学报, 2020, 41(10): 158-163.
[3] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[4] 路浩, 陈原. 基于机器视觉的碳纤维预浸料表面缺陷检测方法[J]. 纺织学报, 2020, 41(04): 51-57.
[5] 王文胜, 李天剑, 冉宇辰, 卢影, 黄民. 筒子纱纱笼纱杆的定位检测方法[J]. 纺织学报, 2020, 41(03): 160-167.
[6] 金守峰, 林强强, 马秋瑞, 张浩. 基于BP神经网络的织物表面绒毛质量的检测方法[J]. 纺织学报, 2020, 41(02): 69-76.
[7] 景军锋, 张君扬, 张缓缓, 苏泽斌. 梯度空间下的丝饼表面缺陷检测[J]. 纺织学报, 2020, 41(02): 44-51.
[8] 孙卫红, 阮棉奖, 邵铁锋, 梁曼. 基于机器视觉的生丝抱合性能检测方法[J]. 纺织学报, 2019, 40(08): 164-168.
[9] 景军锋, 张星星. 基于机器视觉的玻璃纤维管纱毛羽检测[J]. 纺织学报, 2019, 40(05): 157-162.
[10] 徐洋, 朱治潮, 盛晓伟, 余智祺, 孙以泽. 基于机器视觉的鞋面特征点自动识别改进方法[J]. 纺织学报, 2019, 40(03): 168-174.
[11] 景军锋, 郭根. 基于机器视觉的丝饼毛羽检测[J]. 纺织学报, 2019, 40(01): 147-152.
[12] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[13] 杨松林 马帅 丁朝鹏 范红丽 薛欢欢. 应用机器视觉的织物表面绒毛率测试系统[J]. 纺织学报, 2017, 38(06): 118-123.
[14] 蒋双歌 王蕾 王静 刘建立 高卫东. 织物折皱回复的各向异性表征[J]. 纺织学报, 2016, 37(06): 42-47.
[15] 李文羽 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3): 158-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!