纺织学报 ›› 2021, Vol. 42 ›› Issue (03): 36-43.doi: 10.13475/j.fzxb.20200501508
所属专题: 纳米纤维制备及应用
XING Yusheng1,2, HU Yi1,2(), CHENG Zhongling1,2
摘要:
为改善硅/碳纳米纤维的形貌结构并提升其储能性能,将球磨均匀的Si/TiO2粉末和聚丙烯腈(PAN)通过静电纺丝制得Si/TiO2/PAN纳米纤维膜,然后分别在氩气和氢气氛围中炭化得到Si/TiO2复合碳纳米纤维;优化了Si与TiO2的最佳配比与最适炭化温度,分析了纤维形貌、分子结构、元素分布对复合碳纳米纤维储能性能的影响。结果表明:在Si和TiO2质量比为1∶2以及900 ℃炭化条件下,Si/TiO2复合碳纳米纤维具有良好的导电性,其纤维结构与形成的TiO2无序框架可有效缓解Si的体积膨胀和团聚,并显著提高锂离子电池的容量与循环稳定性;在0.2 mA/g电流密度下进行120次循环后,在氩气和氢气条件下炭化制备的复合碳纳米纤维的放电比容量分别为942和1 212 mA·h/g,在氢气条件下炭化制备的复合碳纳米纤维拥有更加优异的倍率性能。
中图分类号:
[1] | DAI K, BERGOT A, LIANG C, et al. Environmental issues associated with wind energy:a review[J]. Renewable Energy, 2015,75:911-921. |
[2] | 陈成钧. 太阳能和风能的短期分散储存[J]. 物理, 2009,38(2):84-91. |
CHEN Chengjun. Short-term decentralized storage of solar and wind energy[J]. Physics, 2009,38(2):84-91. | |
[3] | 邓丽丹. 基于Spring MVC的电力新能源基础数据管理与分析系统[D]. 南昌:江西农业大学, 2014: 27-55. |
DENG Lidan. Spring MVC-based power new energy basic data management and analysis system[D]. Nanchang:Jiangxi Agricultural University, 2014: 27-55. | |
[4] | 谢娇, 王家俊, 俞秋燕, 等. 碳纳米管/聚合物温差发电复合纺织材料的制备及其性能[J]. 纺织学报, 2018,39(11):55-60. |
XIE Jiao, WANG Jiajun, YU Qiuyan, et al. Preparation and properties of carbon nanotube/polymer thermoelectric composite textile materials[J]. Journal of Textile Research, 2018,39(11):55-60. | |
[5] | 赵金洋, 孙窈, 张鑫, 等. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019,40(8):7-13. |
ZHAO Jinyang, SUN Yao, ZHANG Xin, et al. Reconstruction of morphology and structure of tin/carbon nanofiber lithium anode materials and its mechanism[J]. Journal of Textile Research, 2019,40(8):7-13. | |
[6] | 田银彩, 张浩鹏, 李博琛, 等. 静电纺聚丙烯腈/石墨烯碳纳米纤维的结构与性能[J]. 纺织学报, 2018,39(10):24-31. |
TIAN Yincai, ZHANG Haopeng, LI Bochen, et al. Structure and properties of electrospun polyacrylonitrile/graphene carbon nanofibers[J]. Journal of Textile Research, 2018,39(10):24-31.
doi: 10.1177/004051756903900104 |
|
[7] | 魏来. 锂离子电池硅基负极材料的制备与改性研究[D]. 长沙:中南大学, 2014: 5-35. |
WEI Lai. Preparation and modification of silicon-based anode materials for lithium-ion batteries[D]. Changsha:Central South University, 2014: 5-35. | |
[8] |
DU F, NI Y, WANG Y, et al. Green fabrication of silkworm cocoon-like silicon-based composite for high-performance Li-ion batteries[J]. ACS Nano, 2017,11(9):8628-8635.
doi: 10.1021/acsnano.7b03830 pmid: 28800223 |
[9] |
XIAO B, SOTO F, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018,8(24):1801441.
doi: 10.1002/aenm.v8.24 |
[10] |
NIE P, LE Z, CHEN G, et al. Graphene caging silicon particles for high-performance lithium-ion batteries[J]. Small, 2018,14(25):1800635.
doi: 10.1002/smll.v14.25 |
[11] |
XU Q, LI J, SUN J, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017,7(3):1601481.
doi: 10.1002/aenm.201601481 |
[12] |
LI B, LI S, JIN Y, et al. Porous Si@C ball-in-ball hollow spheres for lithium-ion capacitors with improved energy and power densities[J]. Journal of Materials Chemistry A, 2018,6(42):21098-21103.
doi: 10.1039/C8TA07576J |
[13] | LIANG G, QIN X, ZOU J, et al. Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities[J]. Carbon, 2018(127):424-431. |
[14] | CHEN H, HOU X, CHEN F, et al. Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature[J]. Carbon, 2018(130):433-440. |
[15] | XU R, WANG G, ZHOU T, et al. Rational design of Si@carbon with robust hierarchically porous custard-apple-like structure to boost lithium storage[J]. Nano Energy, 2017,39:253-261. |
[16] | YANG J, WANG Y, LI W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage[J]. Advanced Materials, 2017(4):1700523. |
[17] | HUANG S, ZHANG L, LIU L, et al. Rationally engineered amorphous TiOx/Si/TiOx nanomembrane as an anode material for high energy lithium ion battery[J]. Energy Storage Materials, 2018,12:23-29. |
[1] | 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76. |
[2] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[3] | 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40. |
[4] | 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174. |
[5] | 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29. |
[6] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[7] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[8] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[9] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20. |
[10] | 王利媛, 康卫民, 庄旭品, 鞠敬鸽, 程博闻. 磺化聚醚砜纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(11): 19-26. |
[11] | 李好义, 许浩, 陈明军, 杨涛, 陈晓青, 阎华, 杨卫民. 纳米纤维吸声降噪研究进展[J]. 纺织学报, 2020, 41(11): 168-173. |
[12] | 王子希, 胡毅. 基于ZnCo2O4的多孔碳纳米纤维制备及其储能性能[J]. 纺织学报, 2020, 41(11): 10-18. |
[13] | 潘璐, 程亭亭, 徐岚. 聚己内酯/聚乙二醇大孔径纳米纤维膜的制备及其在组织工程支架中的应用[J]. 纺织学报, 2020, 41(09): 167-173. |
[14] | 杨凯, 张啸梅, 焦明立, 贾万顺, 刁泉, 李咏, 张彩云, 曹健. 高邻位酚醛基纳米活性碳纤维制备及其吸附性能[J]. 纺织学报, 2020, 41(08): 1-8. |
[15] | 吴红, 刘呈坤, 毛雪, 阳智, 陈美玉. 柔性ZrO2纳米纤维膜的制备及其应用研究现状[J]. 纺织学报, 2020, 41(07): 167-173. |
|