纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 121-126.doi: 10.13475/j.fzxb.20200704206

• 染整与化学品 • 上一篇    下一篇

钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能

张润可, 吕汪洋(), 陈文兴   

  1. 浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
  • 收稿日期:2020-07-17 修回日期:2020-12-29 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 吕汪洋
  • 作者简介:张润可(1995—),女,硕士生。主要研究方向为柔性传感器。

Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes

ZHANG Runke, LÜ Wangyang(), CHEN Wenxing   

  1. National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-07-17 Revised:2020-12-29 Online:2021-04-15 Published:2021-04-20
  • Contact: Lü Wangyang

摘要:

为探索钴酞菁(CoPc)/碳纳米管(CNT)柔性葡萄糖传感器在葡萄糖检测中的应用,制备了一种CoPc和CNT共修饰的柔性碳纤维织物(CFT)修饰电极,并利用电化学工作站的银/氯化银参比电极和铂对电极与其共同组成三电极体系的葡萄糖传感器。借助扫描电子显微镜对修饰电极进行表征,采用循环伏安法、电化学阻抗图谱法、时间-电流曲线法研究葡萄糖传感器的电化学性能。结果表明:该修饰电极具有良好的导电性和电子转移能力,葡萄糖检测线性范围为4×10-3~2.6 mmol/L,检测限为1.4 μmol/L (信噪比为3),灵敏度为231 μA·L/mmol;该修饰电极在检测葡萄糖时具有较好的重复性,测试10次后其响应电流仍可达到初始值的94.6%,且对果糖、蔗糖、乳糖、半乳糖、抗坏血酸、多巴胺、尿酸等物质具有较强的抗干扰性能。

关键词: 钴酞菁, 碳纳米管, 碳纤维织物, 电化学性能, 葡萄糖检测, 传感器

Abstract:

In order to explore the application of cobalt phthalocyanine (CoPc)/carbon nanotube (CNT) flexible glucose sensors for glucose detection, a flexible carbon fiber fabric (CFT) glucose sensor based on CoPc and CNT modification were prepared. The Ag/AgCl reference electrode and platinum counter electrode of electrochemical workstation were used to form the three-electrode glucose sensor. The modified electrode was characterized by scanning electron microscope, and the electrochemical properties of the glucose sensor was studied by cyclic voltammetry, electrochemical impedance spectroscopy and time-current curve. The results show that the modified electrode has good conductivity and fast electron transfer capability, and its linear range for glucose detection is found to be 4×10-3-2.6 mmol/L, the detection limit can be as low as 1.4 μmol/L (signal-noise ratio is 3), and the sensitivity is as high as 231 μA·L/mmol. In addition, the modified electrode has good repeatability in detecting glucose, and the responsive current could still reach 94.6% of the initial value after ten cyclic measurements. It show strong anti-interference performance against fructose, sucrose, lactose, galactose, ascorbic acid, dopamine, uric acid and other substances.

Key words: cobalt phthalocyanine, carbon nanotubes, carbon fiber fabric, electrochemical property, glucose detection, sensor

中图分类号: 

  • O657.15

图1

不同修饰电极的扫描电镜照片"

图2

CoPc/CNT/CFT修饰电极的EDS图谱"

图3

不同修饰电极的循环伏安曲线和电化学阻抗谱图"

图4

不同修饰电极的循环伏安曲线"

图5

在不同扫描速度下CoPc/CNT/CFT修饰电极的循环伏安曲线"

图6

CoPc/CNT/CFT修饰电极的电流响应曲线"

图7

CoPc/CNT/CFT修饰电极的葡萄糖浓度与响应电流之间的相关性曲线"

图8

CoPc/CNT/CFT修饰电极对葡萄糖的可重复性检测结果"

图9

CoPc/CNT/CFT修饰电极对葡萄糖和干扰物质的响应电流"

[1] CAI J, HUANG J, GE M, et al. Immobilization of nanoparticles via rapid and reusable electro polymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors[J]. Small, 2017,13(19):1604240.
[2] JAMAL Rahmani, SIAMARK Sabour. Glucose oxidase method in assessing α-amylase activity: methodological issues on reliability and accuracy[J]. Food Chemistry, 2020,322:126769.
pmid: 32283364
[3] PARK S, BOO H, CHUNG T D, et al. Electrochemical non-enzymatic glucose sensors[J]. Analytica Chimica Acta, 2006,556(1):46-57.
pmid: 17723330
[4] CHEN C, XIE Q, YANG D, et al. Recent advances in electrochemical glucose biosensors: a review[J]. RSC Advances, 2013,3(14):4473-4491.
[5] ZAIDI S A, SHIM J H. Recent developments in nanostructure based electrochemical glucose sensors[J]. Talanta, 2016,149:30-42.
doi: 10.1016/j.talanta.2015.11.033 pmid: 26717811
[6] CEKEN B, KANDAZ M, KOCA A, et al. Electrochemical hydrogen peroxide sensor based on cobalt phthalocyanine captured in polyaniline film on a glassy carbon electrode[J]. Journal of Porphyrins and Phthalocyanines, 2012,16(4):380-389.
[7] ARALEKALLU S, MOHAMMED I, MANJUNATHA N, et al. Synjournal of novel azo group substituted polymeric phthalocyanine for amperometric sensing of nitrite[J]. Sensors and Actuators B:Chemical, 2019,282:417-425.
[8] ALASAGUR H, KOMATHI S, KARAKAS H, et al. A glucose biosensor based on novel Lutetium bis-phthalocyanine incorporated silica-polyaniline conducting nanobeads[J]. Biosensors and Bioelectronics, 2018,102:637-645.
[9] CUI L, PU T, LIU Y, et al. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor[J]. Electrochimica Acta, 2013,88:559-564.
[10] 王乐, 商钰爽, 杜记民, 等. 磷化钴/多壁碳纳米管的制备及电催化性能研究[J]. 化学研究与应用, 2020,32(1):40-45.
WANG Le, SHANG Yushuang, DU Jimin, et al. Synjournal and investigation of electrocatalytic properties for CoP-C nanotubes[J]. Chemical Research and Application, 2020,32(1):40-45.
[11] 吴玉程, 刘晓璐, 叶敏, 等. 碳纳米管负载纳米TiO2复合材料的制备及其性能[J]. 物理化学学报, 2008(1):97-102.
WU Yucheng, LIU Xiaolu, YE Min, et al. Preparation and properties of carbon nanotube-TiO2 nanocomposites[J]. Acta Physico-Chimica Sinica, 2008(1):97-102.
[12] AGBOOLA B O, VILAKAZI S L, OZOEMENA K I. Electrochemistry at cobalt (II) tetrasulfophthalocyanine-multi-walled carbon nanotubes modified glassy carbon electrode: a sensing platform for efficient suppression of ascorbic acid in the presence of epinephrine[J]. Journal of Solid State Electrochemistry, 2009,13(9):1367-1379.
[13] WU D, ZHONG W B. A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors[J]. Journal of Materials Chemistry A, 2019,7(10):5819-583.
[1] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[2] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[3] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[4] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[5] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[6] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[7] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 聚偏氟乙烯/FeCl3复合纤维膜柔性传感器的制备及其性能[J]. 纺织学报, 2020, 41(12): 13-20.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 王博, 凡力华, 原韵, 殷允杰, 王潮霞. 可拉伸聚吡咯/棉针织物的制备及其储电性能[J]. 纺织学报, 2020, 41(10): 101-106.
[10] 徐守东, 冷奕锦, 吴国新. 基于神经网络的籽棉颜色分级检测[J]. 纺织学报, 2020, 41(10): 34-40.
[11] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[12] 黄阳阳, 刘伟, 华英, 赵中琦, 徐劲. 幼童用智能示警蚕丝被的研发[J]. 纺织学报, 2020, 41(10): 150-157.
[13] 戴鑫, 李晶, 陈晨. 镀铜碳纤维丝束细观耐磨性的有限元仿真模拟[J]. 纺织学报, 2020, 41(06): 27-35.
[14] 王建萍, 徐朔, 王竹君, 姚晓凤, 李永贵. 智能运动文胸电子监测系统设计方案与实施[J]. 纺织学报, 2020, 41(06): 105-111.
[15] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!