纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 177-183.doi: 10.13475/j.fzxb.20200303507

• 综合述评 • 上一篇    下一篇

纤维对水泥基复合材料性能影响研究进展

陆振乾1, 杨雅茹2, 荀勇3()   

  1. 1.盐城工学院 纺织服装学院, 江苏 盐城 224051
    2.嘉兴学院 材料与纺织工程学院,浙江 嘉兴 314001
    3.盐城工学院 土木工程学院, 江苏 盐城 224051
  • 收稿日期:2020-03-13 修回日期:2021-01-06 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 荀勇
  • 作者简介:陆振乾(1980—),男,副教授,博士。主要研究方向为纺织复合材料。
  • 基金资助:
    国家自然科学基金项目(51478408)

Research review of fiber effect on properties of cement-based composite

LU Zhenqian1, YANG Yaru2, XUN Yong3()   

  1. 1. College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
    2. College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. College of Civil Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
  • Received:2020-03-13 Revised:2021-01-06 Online:2021-04-15 Published:2021-04-20
  • Contact: XUN Yong

摘要:

为拓宽纤维材料在水泥基复合材料上的应用,促进超高韧性纤维增强水泥基复合材料的发展,对目前国内外纤维性能对水泥基复合材料性能影响的研究进展进行综述。首先,介绍了纤维增强混凝土的种类及增强增韧机制,认为纤维桥接作用可阻止裂纹产生和扩展,显著提高混凝土的拉伸强度和延展性能。其次,分析了混凝土领域常用有机纤维和无机纤维的性能特征;然后对影响纤维增强混凝土性能的因素进行归纳与总结,从混杂纤维、纤维形态、体积分数、纤维排列方向以及纤维粘结性能对复合材料性能的影响关系进行分析。最后,指出纤维增强混凝土研究中亟待解决的问题,并展望了未来纤维增强混凝土的发展趋势。

关键词: 纤维增强混凝土, 水泥基复合材料, 超高韧性, 力学性能, 增强增韧机制

Abstract:

In order to broaden the application of fiber materials in cement-based composites and to promote the development of ultra high toughness cement-based composite, the research progress on the effect of fiber properties on cement-based composite properties in China and abroad was reviewed. Firstly, the types of fiber reinforced concrete and the mechanism of strengthening and toughening were introduced. It is noted that fiber bridging can prevent the crack generation and expansion, and significantly improve the tensile strength and ductility of concrete. Secondly, the performance characteristics of organic fiber and inorganic fiber used in concrete field were analyzed. Then, the factors affecting the performance of fiber-reinforced concrete were summarized, and the influences of hybrid fibers, fiber morphology, volume fraction, fiber arrangement direction and fiber bonding property on the performance of composite materials were analyzed and summarized. Finally, the problems needing to be solved in the research of fiber reinforced concrete were highlighted and the development trend of fiber reinforced concrete in the future was forecasted.

Key words: fiber reinforced concete, cement-based composite, ultra high toughness, mechanical property, strengthening and toughening mechanism

中图分类号: 

  • TB332

表1

常用于增强混凝土的纤维的性能"

纤维名称 拉伸强度/
MPa
拉伸模量/
GPa
断裂伸长
率/%
密度/
(g·cm-3)
聚乙烯醇 900~1 900 25~42 6~10 1.30
聚丙烯 240~690 3~5 25~50 0.91
对位芳纶 3 000 60~130 2.1~4.0 1.40
超高分子量聚乙
烯纤维
2 000~3 500 50~125 3~6 0.97
剑麻 600~700 20~38 2~3 1.33
抗碱玻璃纤维 2 500 70 3.6 2.78
碳纤维 3 500~6 000 230~600 1.5~2.0 1.60~1.95
玄武岩纤维 3 000~4 840 79~93 3.1 2.70
陶瓷纤维 800~3 600 360~480 0.8 2.40~2.60
钢纤维 500~2 000 200 3~4 7.84

图1

不同尺度的杂化纤维增强混凝土在拉伸下破坏形式"

图2

增强混凝土纤维的类型及形状特征"

[1] BENTUR A, MINDESS S. Fibre reinforced cementitious composites [M]. Florida: CRC Press, 2006: 1-10.
[2] PELED A, BENTUR A, MOBASHER B. Textile reinforced concrete [M]. Florida: CRC Press, 2017: 5-34.
[3] LE H V, KIM D J. Detecting crack and damage location in self-sensing fiber reinforced cementitious composites[J]. Construction and Building Materials, 2020,240:117973.
[4] KHAN M, ABBAS Y, FARES G. Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines[J]. Journal of King Saud University: Engineering Sciences, 2017,29(4):339-347.
[5] KUNIEDA M, ROKUGO K. Recent progress on HPFRCC in Japan[J]. Journal of Advanced Concrete Technology, 2006,4(1):19-33.
[6] LI V C. Engineered cementitious composites (ECC) material, structural, and durability performance [M]. Florida: CRC Press, 2007: 3-6.
[7] ZHANG Y, BAI S, ZHANG Q, et al. Failure behavior of strain hardening cementitious composites for shear strengthening RC member[J]. Construction & Building Materials, 2015,78:470-473.
[8] COMMITTEE J D. DFRCC terminology and application concepts[J]. Journal of Advanced Concrete Technology, 2003,1(3):335-340.
[9] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008,41(6):45-60.
XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008,41(6):45-60.
[10] WEIMANN M, LI V. Hygral behavior of engineered cementitious composites (ECC)/vergleich der hygrischen eigenschaften von ECC mit beton[J]. Restoration of Buildings and Monuments, 2003,9(5):513-534.
[11] ROMAULDI J P, BATSON G B. Behaviour of reinforced concrete beams with closely spaced reinforcement[J]. ACI Structural Journal, 1963,60(6):775-789.
[12] 高丹盈, 刘建秀. 钢纤维混凝土基本理论 [M]. 北京: 科学技术文献出版社, 1994: 25-28.
GAO Danying, LIU Jianxiu. Basic theory of steel fiber reinforced concrete [M]. Beijing: Science and Technology Literature Press, 1994: 25-28.
[13] SI W, CAO M, LI L. Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar[J]. Construction and Building Materials, 2020,265:120347.
[14] LI V C. Tailoring ECC for special attributes: a review[J]. International Journal of Concrete Structures and Materials, 2012,6(3):135-144.
[15] WANG W, WANG L, SHI Q, et al. Progress of the surface modification of PP fiber used in concrete[J]. Polymer-Plastics Technology and Engineering, 2006,45(1):29-34.
[16] YANG E H, LI V C. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model[J]. Construction and Building Materials, 2010,24(2):130-139.
[17] 高丹盈, 李晗, 杨帆. 聚丙烯-钢纤维增强高强混凝土高温性能[J]. 复合材料学报, 2013,30(1):187-193.
GAO Danying, LI Han, YANG Fan. Performance of polypropylene-steel hybrid fiber reinforced concrete after being exposed to high temperature[J]. Acta Materiae Compositae Sinica, 2013,30(1):187-193.
[18] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction and Building Materials, 2018,158:217-227.
[19] CUROSU I, MECHTCHERINE V, MILLON O. Effect of fiber properties and matrix composition on the tensile behavior of strain-hardening cement-based compo-sites (SHCCs) subject to impact loading[J]. Cement and Concrete Research, 2016,82:23-35.
[20] CUROSU I, LIEBSCHER M, MECHTCHERINE V, et al. Tensile behavior of high-strength strain-hardening cement-based composites (HS-SHCC) made with high-performance polyethylene, aramid and PBO fibers[J]. Cement and Concrete Research, 2017,98:71-81.
[21] SILVA F D A, MOBASHER B, FILHO R D T. Cracking mechanisms in durable sisal fiber reinforced cement composites[J]. Cement and Concrete Composites, 2009,31(10):721-730.
[22] SCHEFFLER C, GAO S, PLONKA R, et al. Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: fibre properties and durability[J]. Composites Science and Technology, 2009,69(3/4):531-538.
[23] BARLUENGA G, HERNÁNDEZ-OLIVARES F. Cracking control of concretes modified with short AR-glass fibers at early age. Experimental results on standard concrete and SCC[J]. Cement and Concrete Research, 2007,37(12):1624-1638.
[24] WANG C, LI K Z, LI H J, et al. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites[J]. Materials Science and Engineering: A, 2008,487(1/2):52-57.
[25] WANG Z J, LI K Z, WANG C. Freezing-thawing effects on electromagnetic wave reflectivity of carbon fiber cement based composites[J]. Construction and Building Materials, 2014,64:288-292.
[26] KABAY N. Abrasion resistance and fracture energy of concretes with basalt fiber[J]. Construction and Building Materials, 2014,50:95-101.
[27] BERNAL S A, BEJARANO J, GARZ N C, et al. Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites[J]. Composites Part B: Engineering, 2012,43(4):1919-1928.
[28] BERNAL S, GUTIERREZ R D, DELVASTO S, et al. Performance of an alkali-activated slag concrete reinforced with steel fibers[J]. Construction and Building Materials, 2010,24(2):208-214.
[29] PAKRAVAN H, LATIFI M, JAMSHIDI M. Hybrid short fiber reinforcement system in concrete: a review[J]. Construction and Building Materials, 2017,142:280-294.
[30] MARKOVIC I. High-performance hybrid-fibre concrete-development and utilisation. Technische Universität Delft [M]. Amsterdam: IOS Press, 2006: 7-8.
[31] PARK S H, KIM D J, RYU G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cement and Concrete Composites, 2012,34(2):172-184.
[32] LIBRE N A, SHEKARCHI M, MAHOUTIAN M, et al. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice[J]. Construction and Building Materials, 2011,25(5):2458-2464.
[33] YUN H D. Effect of accelerated freeze-thaw cycling on mechanical properties of hybrid PVA and PE fiber-reinforced strain-hardening cement-based compo-sites (SHCCs)[J]. Composites Part B: Engineering, 2013,52:11-20.
[34] DINH H H, PARRA-MONTESINOS G J, WIGHT J K. Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement[J]. Structural Journal, 2010,107(5):597-606.
[35] DINH H H. Shear behavior of steel fiber reinforced concrete beams without stirrup reinforcement[D]. Michigan:The University of Michigan, 2009: 54-60.
[36] WILLE K, NAAMAN A E, EL-TAWIL S, et al. Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing[J]. Materials and Structures, 2012,45(3):309-324.
[37] SONG P, HWANG S. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004,18(9):669-673.
[38] TANYILDIZI H. Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes[J]. New Carbon Materials, 2008,23(4):339-344.
[39] KAYALI O, HAQUE M, ZHU B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete[J]. Cement and Concrete Composites, 2003,25(2):207-213.
[40] PANSUK W, SATO H, SATO Y, et al. Tensile behaviors and fiber orientation of UHPC[C]//Proceedings of Second International Symposium on Ultra High Performance Concrete. Kassel: Kassel University Press, 2008: 161-168.
[41] HAMBACH M, M LLER H, NEUMANN T, et al. Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural str-ength (>100 MPa)[J]. Cement and Concrete Research, 2016,89:80-86.
[42] BARNETT S J, LATASTE J F, PARRY T, et al. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength[J]. Materials and Structures, 2010,43(7):1009-1023.
[43] LI V C. Integrated structures and materials design[J]. Materials and Structures, 2007,40(4):387-396.
doi: 10.1617/s11527-006-9146-4
[44] LI V C, WU H C, CHAN Y W. Effect of plasma treatment of polyethylene fibers on interface and ementitious composite properties[J]. Journal of The American Ceramic Society, 2005,79(3):700-704.
[45] LIU F, SHI Z, DONG Y. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing, 2018,112:337-345.
[46] COHEN Z, PELED A. Effect of nanofillers and production methods to control the interfacial characteristics of glass bundles in textile fabric cement-based composites[J]. Composites Part A: Applied Science and Manufacturing, 2012,43(6):962-972.
[1] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[2] 黄笛, 李芳, 李刚. 涤纶/蚕丝机织心脏瓣膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 74-79.
[3] 孙亚博, 李立军, 马崇启, 吴兆南, 秦愈. 基于ABAQUS的筒状纬编针织物拉伸力学性能模拟[J]. 纺织学报, 2021, 42(02): 107-112.
[4] 杨萍, 严飙, 马丕波. 网状结构织物制备与应用研究进展[J]. 纺织学报, 2021, 42(01): 175-180.
[5] 陈美玉, 刘玉琳, 胡革明, 孙润军. 涡流纺纱线的包缠加捻对其力学性能的影响[J]. 纺织学报, 2021, 42(01): 59-66.
[6] 宋星, 金肖克, 祝成炎, 蔡冯杰, 田伟. 玻璃纤维/光敏树脂复合材料的3D打印及其力学性能[J]. 纺织学报, 2021, 42(01): 73-77.
[7] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
[8] 刘淑强, 武捷, 吴改红, 阴晓龙, 李甫, 张曼. 纳米SiO2对玄武岩纤维的表面改性[J]. 纺织学报, 2020, 41(12): 37-41.
[9] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[10] 展晓晴, 李凤艳, 赵健, 李海琼. 超高分子量聚乙烯纤维的热力学稳定性能[J]. 纺织学报, 2020, 41(08): 9-14.
[11] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[12] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[13] 李莉萍, 吴道义, 战奕凯, 何敏. 电泳沉积碳纳米管和氧化石墨烯修饰碳纤维表面的研究进展[J]. 纺织学报, 2020, 41(06): 168-173.
[14] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[15] 岳程飞, 丁长坤, 李璐, 程博闻. 碳化二亚胺/羟基丁二酰亚胺交联改性胶原蛋白纤维制备及其性能[J]. 纺织学报, 2020, 41(03): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!