纺织学报 ›› 2021, Vol. 42 ›› Issue (04): 184-190.doi: 10.13475/j.fzxb.20200405907

• 综合述评 • 上一篇    下一篇

服装松量设计及表征模型构建研究进展

张益洁1,2, 李涛1, 吕叶馨1, 杜磊1,3, 邹奉元1,3()   

  1. 1.浙江理工大学 服装学院, 浙江 杭州 310018
    2.绍兴文理学院 上虞分院, 浙江 绍兴 312300
    3.浙江理工大学 浙江省服装工程技术研究中心, 浙江 杭州 310018
  • 收稿日期:2020-04-20 修回日期:2020-09-03 出版日期:2021-04-15 发布日期:2021-04-20
  • 通讯作者: 邹奉元
  • 作者简介:张益洁(1985—),女,讲师,博士生。主要研究方向为服装数字化技术。
  • 基金资助:
    国家自然科学基金面上项目(11671009)

Progress in garment ease design and its modeling methods

ZHANG Yijie1,2, LI Tao1, LÜ Yexin1, DU Lei1,3, ZOU Fengyuan1,3()   

  1. 1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Shangyu College, Shaoxing University, Shaoxing, Zhejiang 312300, China
    3. Apparel Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-04-20 Revised:2020-09-03 Online:2021-04-15 Published:2021-04-20
  • Contact: ZOU Fengyuan

摘要:

为揭示服装松量与虚拟试衣、服装样板设计的关系,以松量分类为基础,分别从松量影响因素、研究方法及松量表征等3个层面解析服装松量设计。归纳了松量表征方法的特点,阐述了松量表征模型的最新研究进展,分析了松量在虚拟试衣和服装样板设计中的作用。研究表明:有效的松量设计应充分考虑人体着装形态、服装合体性及舒适性等因素,松量的直接表征和间接表征从不同角度体现了服装与人体间的关系;应将松量充分结合至虚拟试衣和服装样板设计,以促进虚拟服装的真实性,实现服装样板的智能化设计。研究认为松量的三维空间表征、连续动态分布和服装三维空间松量预测模型研究是未来主要探索方向。

关键词: 服装松量, 表征模型, 虚拟试衣, 服装样板设计, 三维服装CAD

Abstract:

In order to reveal the relationship between garment ease allowance and virtual try-on even garment pattern design, the influencing factors of ease allowance, research methods and representation were reviewed and analyzed. The characteristics of ease allowance representation methods were summarized, and the latest research progress in ease representation models were scrutinized in particular. The effect of garment ease in virtual try-on and pattern design were further analyzed, respectively. It shows that the effective garment ease design should consider the factors of human body's dress form, clothing fit and comfort. The direct and indirect representation methods reflect the relationship between clothing and human body from different perspectives. The combination of ease allowance with garment virtual try-on and pattern design is effective to promote the authenticity of virtual try-on and facilitate intelligent design of clothing. The review indicates that three-dimensional spatial representation, continuous dynamic distribution and the construction of three-dimensional prediction models of ease allowance are regarded as the main research directions in garment ease in the future.

Key words: garment ease, representation model, virtual try-on, garment pattern design, 3-D garment CAD

中图分类号: 

  • TS941.26

图1

服装松量设计影响因素之间的关系"

图2

松量表征参数 注:围度差=WCG-WCB; 分段弧长差=SCG-SCB。"

图3

三维服装向量场"

图4

运动时防护服动态空气层变化"

Fig.5

服装与人体有限元力学接触模型"

图6

松量与三维服装设计"

[1] KIM I H, NAM Y J, HAN H. A quantification of the preferred ease allowance for the men's formal jacket patterns[J]. Fashion and Textiles, 2019,6(5):1-17.
[2] PHELPS H L, WATT S D, SIDHU H S, et al. Using phase change materials and air gaps in designing firefighting suits: a mathematical investigation[J]. Fire Technology, 2019,55(1):363-381.
[3] DU C Q, LI B Z, YU W. Moisture in clothing and its transient influence on human thermal responses through clothing microenvironment in cold environments in winter[J]. Building and Environment, 2019,15(6):1-12.
[4] CHOI M S. Simulation on silhouette variations according to vacant space quantity between body and clothing-focused on men's upper body[J]. Fashion & Textile Research Journal, 2005,7(2):225-230.
[5] 刘正, 李基拓, 陆国栋. 着装间隙量空间形态分布研究及其应用综述[J]. 计算机辅助设计与图形学学报, 2012,24(10):1294-1301.
LIU Zheng, LI Jituo, LU Guodong. Review on 3D allocation of ease allowance and its application in garment design[J]. Journal of Computer Aided Design & Computer Graphics, 2012,24(10):1294-1301.
[6] GILL S. Improving garment fit and function through ease quantification[J]. Journal of Fashion Marketing and Management, 2011,15(2):228-241.
[7] GILL S, HAYES S. Lower body functional ease requirements in the garment pattern[J]. International Journal of Fashion Design Technology and Education, 2012,5(1):13-23.
[8] PARK S H, LEE E H. A comparative study on the ease of men's jackets according to the pattern draft[J]. Journal of the Korean Society of Design Culture, 2013,19(2):112-127.
[9] MERT E, PSIKUTA A, BUENO M A, et al. The effect of body postures on the distribution of air gap thickness and contact area[J]. International Journal of Biometeorology, 2017,61(2):363-375.
doi: 10.1007/s00484-016-1217-9 pmid: 27522664
[10] CHOI J, KIM H, KANG B, et al. Analysis of clothing air gap in a protective suit according to the body pos-tures[J]. Journal of Fiber Bioengineering and Informatics, 2014,7(4):573-581.
[11] 徐继红, 张文斌, 肖平. 人体与服装特征曲面间面积松量的分配关系[J]. 纺织学报, 2008,29(5):102-106.
XU Jihong, ZHANG Wenbin, XIAO Ping. Area ease distribution relationship between the body and gar-ment[J]. Journal of Textile Research, 2008,29(5):102-106.
[12] 李涛, 杜磊, 孙洁, 等. 短裤特征截面廓形分析及间隙量预测模型构建[J]. 纺织学报, 2019,40(5):113-118.
LI Tao, DU Lei, SUN Jie, et al. Typical cross section silhouette analysis and interval prediction model construction of shorts[J]. Journal of Textile Research, 2019,40(5):113-118.
[13] 张爱萍, 王云仪, 姚怡. 服装胸围截面上距离松量的分配关系[J]. 纺织学报, 2012,33(6):76-80.
ZHANG Aiping, WANG Yunyi, YAO Yi. Study on relationships between garment's distance ease distributions at bust section[J]. Journal of Textile Research, 2012,33(6):76-80.
[14] LAGE A, ANCUTIENE K. Virtual try-on technologies in the clothing industry: part 1: investigation of distance ease between body and garment[J]. The Journal of The Textile Institute, 2017,108(10):1787-1793.
[15] WANG Z H, ROGER N G, NEWTON E. Investigation of jacket silhouette based on ease distribution[J]. Journal of Donghua University (English Edition), 2014,31(3):316-319.
[16] 姚怡, 狄宏静. 女装胸围加放量与穿着方式及面料厚度的关系[J]. 纺织学报, 2012,33(11):107-111.
YAO Yi, DI Hongjing. Relationship between dress bust ease wearing way and thickness of fabric[J]. Journal of Textile Research, 2012,33(11):107-111.
[17] CASTRO L M, HERNANDEZ I. Practical pattern making: a step-by-step guide[M]. Canada: Firefly Books, 2015: 56-82.
[18] LIU Z, HE Q, ZOU F, et al. Apparel ease distribution analysis using three-dimensional motion capture[J]. Textile Research Journal, 2019,35(2):1-13.
[19] LIM H S. Three dimensional virtual try-on technologies in the achievement and testing of fit for mass customization[M]. North Carolina: North Carolina State University, 2009: 46-71.
[20] ZHANG F F, LITTLE T J. Dynamic ease evaluation for 3D garment design[J]. Journal of Fashion Marketing and Management, 2018,22(2):209-222.
[21] WANG S T, WANG X H, WANG Y Y. Effects of clothing ease and body postures on the air gap and clothing coverage[J]. International Journal of Clothing Science and Technology, 2019,31(4):578-591.
[22] PETRAK S, MARINA S, NAGLIC M M. Design and 3D simulation of unique women's pants collection[C]// Proceedings of the 9th Scientific and Professional Consultancy Textile Science and Economy. Zagreb: University of Zagreb, 2016: 118-121.
[23] HU P, HO E S, ASLAM N, et al. A new method to evaluate the dynamic air gap thickness and garment sliding of virtual clothes during walking[J]. Textile Research Journal, 2019,89(19):4148-4161.
[24] MERT E, PSIKUTA A, ARÉVALO M, et al. A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking[J]. Measurement, 2018,117(5):153-164.
[25] UDAYRA J, TALUKDAR P, DAS A, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017,108(3):271-291.
[26] GUPTA D. New directions in the field of anthropometry, sizing and clothing fit[J]. Anthropometry, Apparel Sizing and Design, 2020,25(1):3-27.
[27] GU B F, SU J Q, LIU G L, et al. Pattern alteration of women's suits based on ease distribution[J]. International Journal of Clothing Science and Technology, 2016,28(2):201-215.
[28] LI J, ZHANG Z H, WANG Y Y. The relationship between air gap sizes and clothing heat transfer performance[J]. Journal of The Textile Institute, 2013,104(12):1327-1336.
[29] ZHANG J, INNMI N, KIM K O, et al. Upper garment 3D modeling for pattern making[J]. International Journal of Clothing Science and Technology, 2015,27(6):852-869.
[30] HUANG H Q, MOK P Y, KWOK Y L, et al. Block pattern generation: from parameterizing human bodies to fit feature-aligned and flattenable 3D garments[J]. Computers in Industry, 2012,63(8):680-691.
[31] THOMASSEY S, BRUNIAUX P. A template of ease allowance for garments based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013,43(5):406-416.
[32] CHEN Y, ZENG X, HAPPIETTE M, et al. Optimization of garment design using fuzzy logic and sensory evaluation techniques[J]. Engineering Applications of Artificial Intelligence, 2009,22(2):272-282.
[33] WANG J F, ZHONG B Y, WANG H Q. Measuring garment pressure at any point using a wearable sen-sor[J]. Journal of Engineered Fibers and Fabrics, 2019,14(4):1-8.
[34] WANG R M, LIU Y, LUO X N, et al. A finite-element mechanical contact model based on mindlin-reissner shell theory for a three-dimensional human body and garment[J]. Journal of Computational and Applied Mathematics, 2011,236(5):867-877.
doi: 10.1016/j.cam.2011.05.017
[35] CHAW E, KRZYWINSKI S H, ROEDEL H. Garment prototyping based on scalable virtual female bodies[J]. International Journal of Clothing Science and Technology, 2013,25(3):184-197.
[36] MENG Y, WANG C C L, JIN X. Flexible shape control for automatic resizing of apparel products[J]. Computer-Aided Design, 2012,44(1):68-76.
[37] LI J T, LU G D, LIU Z. Feature curve-net-based three-dimensional garment customization[J]. Textile Research Journal, 2013,83(5):519-531.
[38] TAO X Y, BRUNIAUX P. Toward advanced three-dimensional modeling of garment prototype from draping technique[J]. International Journal of Clothing Science and Technology, 2013,25(4):266-283.
[39] SU J Q, GU B F, LIU G L, et al. Determination of distance ease of pants using 3D scanning data[J]. International Journal of Clothing Science and Technology, 2015,27(1):47-59.
[1] 陈咪, 叶勤文, 张皋鹏. 斜裁裙参数化结构模型的构建[J]. 纺织学报, 2020, 41(07): 135-140.
[2] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(06): 125-131.
[3] 胡紫婷, 郑晓慧, 冯铭铭, 王英健, 刘莉, 丁松涛. 衣下空气层对透气型防护服热阻和湿阻的影响[J]. 纺织学报, 2019, 40(11): 145-150.
[4] 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195.
[5] 王永进;莫碧贤;李翼;郭旖莲. 人体腰部及下肢运动对服装松量设计的影响[J]. 纺织学报, 2010, 31(3): 92-97.
[6] 王湛;张辉;赵玉玲. 三维服装CAD中建模与展示技术[J]. 纺织学报, 2008, 29(4): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!