纺织学报 ›› 2021, Vol. 42 ›› Issue (05): 23-30.doi: 10.13475/j.fzxb.20200901808

• 纤维材料 • 上一篇    下一篇

纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能

余美琼1,2, 袁红梅1, 陈礼辉1()   

  1. 1.福建农林大学 材料工程学院, 福建 福州 350108
    2.福建技术师范学院 海洋与生化工程学院, 福建 福清 350300
  • 收稿日期:2020-09-07 修回日期:2021-01-08 出版日期:2021-05-15 发布日期:2021-05-20
  • 通讯作者: 陈礼辉
  • 作者简介:余美琼(1981—),女,副教授,博士生。主要研究方向为生物质能源与材料。
  • 基金资助:
    国家自然科学基金项目(31971612);福建农林大学科技发展基金项目(CXZX2018007);福建农林大学科技发展基金项目(CXZX2017040)

Rheological properties of cellulose/LiCl/ N, N-dimethylacetamide solution

YU Meiqiong1,2, YUAN Hongmei1, CHEN Lihui1()   

  1. 1. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
    2. School of Ocean Science and Biochemistry Engineering, Fujian Polytechnic Normal University, Fuqing, Fujian 350300, China
  • Received:2020-09-07 Revised:2021-01-08 Online:2021-05-15 Published:2021-05-20
  • Contact: CHEN Lihui

摘要:

为探究纤维素溶液流变性能对其静电纺丝可纺性的影响,研究了纤维素/氯化锂(LiCl)/N, N-二甲基乙酰胺(DMAc)溶液的稳态流变性能和动态流变性能,并在此基础上进行静电纺丝。结果表明:纤维素/LiCl/DMAc溶液为假塑性流体,溶液的表观黏度、稠度系数、结构黏度指数均随着温度的升高而减小,随着纤维素质量分数的增加而增大,而非牛顿指数的变化规律则相反;20~60 ℃温度下,质量分数为2.5%和3.0%的纤维素/LiCl/DMAc溶液的非牛顿指数更接近1,具有较稳定的流变性能,且结构黏度指数较小,更易进行纺丝操作;室温下,质量分数为3.0%的纤维素/LiCl/DMAc溶液更适宜进行静电纺丝。

关键词: 纤维素, 氯化锂/N, N-二甲基乙酰胺, 稳态流变性能, 动态流变性能, 静电纺丝, 可纺性

Abstract:

In order to investigate the effect of rheological properties of cellulose solution on the spinnability of electrospinning, the steady and dynamic rheological properties of cellulose/LiCl/N, N-dimethylacetamide(DMAc)solution were studied,and electrospinning was carried out on this basis. It was found that the cellulose/LiCl/DMAc solutions were pseudoplastic fluid. The research results showed that the apparent viscosity, consistency coefficient and structural viscosity index of the solution decrease with the increase of temperature and increase with the increase of cellulose mass fraction, while the variations of non-Newtonian index were opposite. The non-Newtonian indices of the 2.5% and 3.0% cellulose/LiCl/DMAc solutions were closer to 1 at 20-60 ℃, meaning that the solutions have stable rheological properties. The structural viscosity indices of the 2.5% and 3.0% cellulose/LiCl/DMAc solutions were smaller, making them easier to spin, with 3.0% cellulose/LiCl/DMAc solution the optimal for electrospinning at room temperature.

Key words: cellulose, LiCl/N, N-dimethylacetamide, steady state rheology, dynamic rheology, electrospinning, spinnability

中图分类号: 

  • O636.11

图1

不同温度下的纤维素/LiCl/DMAc溶液的稳态流变性能"

表1

不同温度不同质量分数下纤维素/LiCl/DMAc溶液的稠度系数K和非牛顿指数n"

温度/℃ K n
2.5% 3.0% 3.5% 4.0% 2.5% 3.0% 3.5% 4.0%
20 8.740 16.361 25.634 43.971 0.812 0.753 0.736 0.702
30 5.293 9.755 16.482 29.827 0.857 0.810 0.772 0.732
40 3.461 7.036 11.863 19.640 0.888 0.834 0.791 0.772
50 2.591 4.393 7.329 13.233 0.874 0.860 0.832 0.799
60 1.969 3.108 5.522 9.557 0.883 0.879 0.842 0.824

表2

不同温度不同质量分数下纤维素/LiCl/DMAc溶液的Δη值"

温度/℃ Δη
2.5% 3.0% 3.5% 4.0%
20 7.559 9.582 10.216 11.486
30 6.007 7.645 8.943 10.384
40 4.852 6.785 8.246 8.939
50 5.006 5.697 6.778 8.002
60 5.510 4.922 6.297 7.032

图2

不同剪切速率下纤维素/LiCl/DMAc溶液的黏流活化能"

图3

不同质量分数的纤维素/LiCl/DMAc溶液的动态流变性能"

图4

不同温度下的纤维素/LiCl/DMAc溶液的动态流变性能"

图5

不同质量分数的纤维素/LiCl/DMAc溶液静电纺丝照片"

图6

不同放大倍数下3.0%纤维素/LiCl/DMAc溶液静电纺纤维的形貌照片"

[1] DRUEL L, NIEMEYER P, MILOW B, et al. Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads[J]. Green Chemistry, 2018,20(17):3993-4002.
doi: 10.1039/C8GC01189C
[2] 史铁钧, 吴德峰. 高分子流变学基础[M]. 北京: 化学工业出版社, 2009:27-30.
SHI Tiejun, WU Defeng. Fundamentals of polymer rheo-logy[M]. Beijing: Chemical Industry Press, 2009:27-30.
[3] KIM C W, KIM D S, KANG S Y, et al. Structural studies of electrospun cellulose nanofibers[J]. Polymer, 2006,47(14):5097-5107.
doi: 10.1016/j.polymer.2006.05.033
[4] 陈丹妮, 姜泽明, 张力平. 季铵型离子液体为溶剂的纤维素溶液流变性能研究[J]. 高分子通报, 2017(12):45-53.
CHEN Danni, JIANG Zeming, ZHANG Lipin. Rheological properties of quaternary ammonium/DMSO/cellulose solutions[J]. Polymer Bulletin, 2017 (12):45-53.
[5] ZHANG L H, SHI W T, WANG J Q, et al. Unique gelation and rheological properties of the cellulose/CO2-based reversible ionic liquid/DMSO solutions[J]. Carbohydrate Polymers, 2019,222:115024.
doi: 10.1016/j.carbpol.2019.115024
[6] WANG L J, GAO L, CHENG B W, et al. Rheological behaviors of cellulose in 1-ethyl-3-methylimidazolium chloride/dimethylsulfoxide[J]. Carbohydrate Polymers, 2014,110:292-297.
doi: 10.1016/j.carbpol.2014.03.091
[7] CHEN X, ZHANG Y M, CHENG L Y, et al. Rheology of concentrated cellulose solutions in 1-Butyl-3-methylimidazolium chloride[J]. Journal of Polymers and the Environment, 2009,17(4):273-279.
doi: 10.1007/s10924-009-0149-4
[8] DUPONT A L. Cellulose in lithium chloride/N, N-dimethylacetamide, optimisation of a dissolution method using paper substrates and stability of the solutions[J]. Polymer, 2003,44:4117-4126.
doi: 10.1016/S0032-3861(03)00398-7
[9] 王铁群, 阮金月, 颜少琼, 等. 纤维素LiCl/DMAc体系的溶液特征[J]. 纤维素科学与技术, 1996,4(3):7-13.
WANG Tiequn, RUAN Jinyue, YAN Shaoqiong, et al. Solution characteristics of cellulose inlithum chloride and N,N-dimethylacetamid[J]. Journal of Cellulose Science and Technology, 1996,4(3):7-13.
[10] 哈丽丹·买买提. 纤维素LiCl/DMAc溶液的制备及其稳定性[J]. 纺织学报, 2010,31(8):6-11.
HALIDAN Mamat. Preparation and stability of cellulose LiCl/DMAc solution[J]. Journal of Textile Research, 2010,31(8):6-11.
[11] 程雨桐, 汪东, 袁红梅, 等. 不同溶剂溶解制备纤维素溶液及其流变性能[J]. 中国造纸学报, 2020,35(1):1-6.
CHENG Yutong, WANG Dong, YUAN Hongmei, et al. Preparation and rheological properties of cellulose solutions from different solvents[J]. Transactions of China Pulp and Paper, 2020,35(1):1-6.
[12] WANG S J, LUO T, ZHANG X M, et al. Manipulation of native cellulose eletrospinning from LiCl-DMAc system[J]. Chemical Journal of Chinese Universities, 2017,38(6):990-996.
[13] 张秀超, 张丽改, 代永强, 等. 高分子量微生物纤维素LiCl/DMAc纺丝溶液流变性研究[J]. 化工新型材料, 2014,42(10):140-142.
ZHANG Xiuchao, ZHANG Ligai, DAI Yongqiang, et al. Rheological property of solutions of high molecular weight bacterial cellulose in LiCl/N,N-dimethylacetamide[J]. New Chemical Materials, 2014,42(10):140-142.
[14] 万和军, 尤丽霞, 熊杰, 等. 天然彩色棉LiCl/DMAc溶液流变性能的研究[J]. 纺织学报, 2010,31(6):11-16.
WAN Hejun, YOU Lixia, XIONG Jie, et al. Study on rheological properties of naturally coloredcotton fiber/LiCl/DMAc solution[J]. Journal of Textile Research, 2010,31(6):11-16.
[15] HE X, CHENG L, ZHANG X M, et al. Tissue engineering scaffolds electrospun from cotton cellulose[J]. Carbohydrate Polymers, 2015,115:485-493.
doi: 10.1016/j.carbpol.2014.08.114
[16] 郑瑾, 王治凯, 王怀芳, 等. [BMIM]AC为溶剂的纤维素纺丝溶液流变性研究[J]. 中原工学院学报, 2013,24(3):33-37.
ZHENG Jin, WANG Zhikai, WANG Huaifang, et al. Rheological behavior of cellulose spinning solution with [BMIM]AC as solvent[J]. Journal of Zhongyuan University of Technology, 2013,24(3):33-37.
[17] 李亮, 刘淑萍, 刘让同. NaOH/尿素溶液中纤维素稳态流变性的浓度依赖性[J]. 纺织科技进展, 2017(9):30-33.
LI Liang, LIU Shuping, LIU Rangtong. Concentration dependence of cellulose steady-state rheological property in NaOH/urea aqueous solution[J]. Progress in Textile Science & Technology, 2017(9):30-33.
[18] 林珊, 陈礼辉, 周永辉. 纤维素/壳聚糖/ZnCl2·4H2O溶液的制备及其流变性能[J]. 华中师范大学学报(自然科学版), 2012,46(6):700-704.
LIN Shan, CHEN Lihui, ZHOU Yonghui. Preparation and rheological properties of cellulose/chitosan/ZnCl2·4H2O solution[J]. Journal of Huazhong Normal University(Natural Science Edition), 2012,46(6):700-704.
[19] LI Y, LIU X F, ZHUANG X P, et al. Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system[J]. Fibers and Polymers, 2016,17(5):778-788.
doi: 10.1007/s12221-016-5578-9
[20] 杨革生, 冯坤, 邵惠丽, 等. 竹纤维素/NMMO·H2O溶液流变性能的研究[J]. 纤维素科学与技术, 2008,16(3):54-59.
YANG Gesheng, FENG Kun, SHAO Huili, et al. Study on the rheological behaviors of bamboo cellulose/NMMO·H2O solutions[J]. Journal of Cellulose Science and Technology, 2008,16(3):54-59.
[21] 臧昆, 臧己. 纺丝流变学基础[M]. 北京: 中国纺织出版社, 1993: 269.
ZANG Kun, ZANG Ji. Fundamentals of spinning rheology [M]. Beijing: China Textile & Apparel Press, 1993: 269.
[22] 徐佩弦. 高聚物流变学及其应用[M]. 北京: 化学工业出版社, 2003: 49-57.
XU Peixian. Polymer rheology and application[M]. Beijing: Chemical Industry Press, 2003: 49-57.
[23] 欧阳鹏飞, 张沛然, 张玉芳. 竹纤维素浆粕/[AMIM]Cl/DMSO复配溶液的流变特性研究[J]. 北京服装学院学报(自然科学版), 2018,38(4):17-22.
OUYANG Pengfei, ZHANG Peiran, ZHANG Yufang. Rheological behavior of bamboo cellulose pulp/[AMIM]Cl/DMSO combined solution[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2018,38(4):17-22.
[1] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[2] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/ 聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[3] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[4] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
[5] 成悦, 安琪, 李大伟, 付译鋆, 张伟, 张瑜. SiO2原位掺杂聚偏氟乙烯纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(03): 71-76.
[6] 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49.
[7] 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43.
[8] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[9] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[10] 王迎, 王怡婷, 吴佳庆, 郭亚飞, 郝新敏. 生物基锦纶56用抗静电纺丝油剂的复配及其对短纤维可纺性的影响[J]. 纺织学报, 2021, 42(01): 84-89.
[11] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[12] 王赫, 王洪杰, 阮芳涛, 凤权. 静电纺聚丙烯腈/线性酚醛树脂碳纳米纤维电极的制备及其性能[J]. 纺织学报, 2021, 42(01): 22-29.
[13] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[14] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[15] 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!