纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 189-197.doi: 10.13475/j.fzxb.20200701809

• 综合述评 • 上一篇    下一篇

喷墨打印导电墨水及其智能电子纺织品研究进展

王航1,2,3, 王冰心4, 宁新1,2,3, 曲丽君1,5, 田明伟1,5()   

  1. 1. 青岛大学 纺织服装学院, 山东 青岛 266071
    2. 青岛大学 山东省特型非织造材料工程研究中心,山东 青岛 266071
    3. 青岛大学 非织造材料与产业用纺织品创新研究院, 山东 青岛 266071
    4. 潍坊佳诚数码有限公司, 山东 潍坊 262499
    5. 青岛大学 智能可穿戴技术研究中心, 山东 青岛 266071
  • 收稿日期:2020-07-06 修回日期:2021-03-05 出版日期:2021-06-15 发布日期:2021-06-28
  • 通讯作者: 田明伟
  • 作者简介:王航(1990—),男,讲师,博士。主要研究方向为纳米纤维制备和功能非织造材料。
  • 基金资助:
    山东省自然科学基金项目(ZR2020QE074);山东省自然科学基金项目(ZR2018QEM004);国家自然科学基金项目(51672141);山东省重点研发计划项目(2019JZZY010340);山东省重点研发计划项目(2019JZZY010335);安徽省重大科技专项项目(201903a05020028);山东省高等学校“青创科技计划”创新团队项目(2020KJA013)

Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles

WANG Hang1,2,3, WANG Bingxin4, NING Xin1,2,3, QU Lijun1,5, TIAN Mingwei1,5()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Shandong Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao, Shandong 266071, China
    3. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong266071, China
    4. Weifang Jiacheng Digital Materials Co., Ltd., Weifang, Shandong 262499, China
    5. Research Center for Intelligent and Wearable Technology, Qingdao University, Qingdao,Shandong 266071, China
  • Received:2020-07-06 Revised:2021-03-05 Published:2021-06-15 Online:2021-06-28
  • Contact: TIAN Mingwei

摘要:

为进一步推动印刷电子技术在纺织领域的应用并拓宽智能电子纺织品的应用领域,简要介绍了喷墨打印技术的电路印制过程和导电墨水组成;从当前喷墨打印技术中导电墨水存在的主要问题出发,详细综述了国内外导电墨水中金属系、碳系、高分子系导电组分的研究进展。以纺织基电子器件的柔性应用为出发点,主要介绍了喷墨打印技术在柔性导电器件、智能传感和能源采集与转换等应用领域的研究进展,为基于喷墨打印技术的智能电子纺织品的发展提供了理论与实践参考。最后,对印刷电子技术的技术要素、技术发展和应用前景等方面进行了总结与展望,指出智能打印及柔性应用是其未来的发展方向。

关键词: 印刷电子, 喷墨打印, 导电墨水, 电子纺织品, 柔性电路, 智能纺织品

Abstract:

In order to further promote the application of printed electronic in the field of textiles and to expand the application fields of intelligent electronic textiles, the circuit printing process and conductive ink composition for inkjet printing were concisely introduced. This paper reviewed in detail the global research advancements on metal-, carbon- and polymer-conductive components used in conductive ink based on the main problems of conductive ink encountered in the current inkjet printing technology. In the perspective of flexible applications of textile-based electronic devices, the research progress in inkjet printing technology in the fields of flexible conductive devices, intelligent sensors and energy collection and conversion were discussed in detail, providing theoretical and practical references for the development of intelligent electronic textiles associated with the inkjet printing technology. Finally, the technical elements, technical development and application prospect of printing electronic technology were summarized and prospected, suggesting that intelligent printing and flexible applications would be the pioneering trends.

Key words: printing electronic, inkjet printing, conductive ink, electronic textile, flexible circuit, intelligent textile

中图分类号: 

  • TN41
[1] WU T, GRAY E, CHEN B. A self-healing, adaptive and conductive polymer composite ink for 3D printing of gas sensors[J]. Journal of Materials Chemistry C, 2018, 6(23):6200-6207.
doi: 10.1039/C8TC01092G
[2] WEI T, AHN B Y, GROTTO J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16):1703027.
doi: 10.1002/adma.v30.16
[3] CANO-RAYA C, DENCHEV Z Z, CRUZ S F, et al. Chemistry of solid metal-based inks and pastes for printed electronics: a review[J]. Applied Materials Today, 2019, 15:416-430.
doi: 10.1016/j.apmt.2019.02.012
[4] 张楷力, 堵永国. 喷墨打印中的银导电墨水综述[J]. 贵金属, 2014, 35(4):80-87.
ZHANG Kaili, DU Yongguo. Review of conductive silverinks for inkjet printing[J]. Precious Metals, 2014, 35(4):80-87.
[5] TORTORICH R, CHOI J. Inkjet Printing of Carbon Nanotubes[J]. Nanomaterials, 2013, 3(3):453-468.
doi: 10.3390/nano3030453
[6] ATREYA M, DIKSHIT K, MARINICK G, et al. Poly(lactic acid)-based ink for biodegradable printed electronics with conductivity enhanced through solvent aging[J]. ACS Applied Materials & Interfaces, 2020, 12(20):23494-23501.
[7] 孙悦, 范杰, 王亮, 等. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12):131-138.
SUN Yue, FAN Jie, WANG Liang, et al. Research progress of wearable technology in textiles and appa-rels[J]. Journal of Textile Research, 2018, 39(12):131-138.
[8] SINGH T B, SARICIFTCI N S. Progress in plastic electronics devices[J]. Annual Review of Materials Research, 2006, 36(1):199-230.
doi: 10.1146/annurev.matsci.36.022805.094757
[9] 徐海生, 浦甜松. 高精度数码喷墨打印技术及在印刷电子上的应用[J]. 印制电路信息, 2013(12):8-10.
XU Haisheng, PU Tiansong. High-resolution digital inkjet printing and its applications on printed electro-nics[J]. Printed Electronics, 2013(12):8-10.
[10] 董越, 李晓东, 张牧, 等. 无颗粒型银基导电墨水的制备、性能及其应用研究[J]. 贵金属, 2016, 37(S1):69-74.
DONG Yue, LI Xiaodong, ZHANG Mu, et al. Preparation Preparation, properties and application on particle free silver conductive ink[J]. Precious Metals, 2016, 37(S1):69-74.
[11] NAGHDI S, RHEE K, HUI D, et al. A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: different deposition methods and applications[J]. Coatings, 2018, 8(8):278.
doi: 10.3390/coatings8080278
[12] STEWART I E, KIM M J, WILEY B J. Effect of morphology on the electrical resistivity of silver nanostructure films[J]. ACS Applied Materials & Interfaces, 2017, 9(2):1870-1876.
[13] FU Q, STEIN M, LI W, et al. Conductive films prepared from inks based on copper nanoparticles synthesized by transferred arc discharge[J]. Nanotechnology, 2020, 31(2):25302.
doi: 10.1088/1361-6528/ab4524
[14] HARRA J, MÄKITALO J, SIIKANEN R, et al. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials[J]. Journal of Nanoparticle Research, 2012, 14(6):870.
doi: 10.1007/s11051-012-0870-0
[15] CHEN L, ZHANG D, CHEN J, et al. The use of CTAB to control the size of copper nanoparticles and the concentration of alkylthiols on their surfaces[J]. Materials Science and Engineering: A, 2006, 415(1-2):156-161.
doi: 10.1016/j.msea.2005.08.226
[16] GRAVES J E, BOWKER M E A, SUMMER A, et al. A new procedure for the template synthesis of metal nanowires[J]. Electrochemistry Communications, 2018, 87:58-62.
doi: 10.1016/j.elecom.2017.11.022
[17] JIBRIL L, RAMÍREZ J, ZARETSKI A V, et al. Single-Nanowire strain sensors fabricated by nanoskiving[J]. Sensors and Actuators A: Physical, 2017, 263:702-706.
doi: 10.1016/j.sna.2017.07.046
[18] HOU H, HORN M W, HAMILTON R F. Biased target ion beam deposition and nanoskiving for fabricating NiTi alloy nanowires[J]. Shape Memory and Superelasticity, 2016, 2(4):330-336.
doi: 10.1007/s40830-016-0093-9
[19] MCCARTHY S A, RATKIC R, PURCELL-MILTON F, et al. Adaptable surfactant-mediated method for the preparation of anisotropic metal chalcogenide nanomaterials[J]. Scientific Reports, 2018, 8(1):2860.
doi: 10.1038/s41598-018-21328-7
[20] PARVEEN F, SANNAKKI B, MANDKE M V, et al. Copper nanoparticles: synthesis methods and its light harvesting performance[J]. Solar Energy Materials and Solar Cells, 2016, 144:371-382.
doi: 10.1016/j.solmat.2015.08.033
[21] 郑泽军. 纳米金属颗粒的制备及其喷墨打印研究[D]. 南京: 南京邮电大学, 2019:5-10.
ZHENG Zejun. Preparation of metal nanoparticles and its inkjet printing research[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019:5-10.
[22] 陈浩禹, 张亦文, 吴忠, 等. 金属含量对Co-TiO 2纳米颗粒复合薄膜微观结构及其性能的影响 [J]. 表面技术, 2019, 48(12):54-58.
CHEN Haoyu, ZHANG Yiwen, WU Zhong, et al. Effects of metal content on the microstructure and properties of Co-TiO 2 nanoparticles composite films [J]. Surface Technology, 2019, 48(12):54-58.
[23] 刘文平, 秦海青, 雷晓旭, 等. 纳米铜导电墨水涂覆后的烧结工艺研究[J]. 粉末冶金技术, 2016, 34(4):295-299.
LIU Wenping, QIN Haiqing, LEI Xiaoxu, et al. Investigation of sintering process of nano-copper conductive ink[J]. Powder Metallurgy Technology, 2016, 34(4):295-299.
[24] MAGDASSI S, GROUCHKO M, KAMYSHNY A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability[J]. Materials, 2010, 3(9):4626-4638.
doi: 10.3390/ma3094626
[25] CUI W, LU W, ZHANG Y, et al. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358(1-3):35-41.
doi: 10.1016/j.colsurfa.2009.12.020
[26] GUPTA A, MANDAL S, KATIYAR M, et al. Film processing characteristics of nano gold suitable for conductive application on flexible substrates[J]. Thin Solid Films, 2012, 520(17):5664-5670.
doi: 10.1016/j.tsf.2012.04.017
[27] CHENG C, LI J, SHI T, et al. A novel method of synthesizing antioxidative copper nanoparticles for high performance conductive ink[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(18):13556-13564.
doi: 10.1007/s10854-017-7195-9
[28] XIA X, XIE C, CAI S, et al. Corrosion characteristics of copper microparticles and copper nanoparticles in distilled water[J]. Corrosion Science, 2006, 48(12):3924-3932.
doi: 10.1016/j.corsci.2006.04.007
[29] 刘进丰, 王晓红, 龚秀清. 铜纳米材料在导电墨水中的应用[J]. 自然杂志, 2018, 40(2):123-130.
LIU Jinfeng, WANG Xiaohong, GONG Xiuqing. The application of conductive ink based copper nanomate-rials[J]. Chinese Journal of Nature, 2018, 40(2):123-130.
[30] KIM C K, LEE G, LEE M K, et al. A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics[J]. Powder Technology, 2014, 263:1-6.
doi: 10.1016/j.powtec.2014.04.064
[31] HE H, CHEN R, ZHANG L, et al. Fabrication of single-crystalline gold nanowires on cellulose nano-fibers[J]. Journal of Colloid and Interface Science, 2020, 562:333-341.
doi: 10.1016/j.jcis.2019.11.093
[32] 张煜霖, 彭博, 袁妍, 等. PEDOT:PSVMA/AuNPs导电墨水的合成及应用[J]. 影像科学与光化学, 2016, 34(5):452-464.
ZHANG Yulin, PENG Bo, YUAN Yan, et al. Synthesis and application of PEDOT: PSVMA/AUNPS conductive inks[J]. Imaging Science and Photochemistry, 2016, 34(5):452-464.
[33] ZHAO D, LIU T, PARK J G, et al. Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes[J]. Microelectronic Engineering, 2012, 96:71-75.
doi: 10.1016/j.mee.2012.03.004
[34] CHENG C, ZHANG J, LI S, et al. A water-processable and bioactive multivalent graphene nanoink for highly flexible bioelectronic films and nanofibers[J]. Advanced Materials, 2018, 30(5):1705452.
doi: 10.1002/adma.201705452
[35] LIU F, QIU X, XU J, et al. High conductivity and transparency of graphene-based conductive ink: Prepared from a multi-component synergistic stabilization method[J]. Progress in Organic Coatings, 2019, 133:125-130.
doi: 10.1016/j.porgcoat.2019.04.043
[36] LIU P, HE W, LU A. Preparation of low-temperature sintered high conductivity inks based on nanosilver self-assembled on surface of graphene[J]. Journal of Central South University, 2019, 26(11):2953-2960.
doi: 10.1007/s11771-019-4227-z
[37] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
doi: 10.1038/354056a0
[38] 喻王李, 徐景浩, 徐玉珊, 等. 喷墨打印电路用导电纳米材料的研究进展[J]. 印制电路信息. 2018, 26(10):53-61.
YU Wangli, XU Jinghao, XU Yushan, et al. Research progress of conductive nanomaterials in inkjet printed circuit[J]. Printed Electronics, 2018, 26(10):53-61.
[39] LU K L, LAGO R M, CHEN Y K, et al. Mechanical damage of carbon nanotubes by ultrasound[J]. Carbon, 1996, 34(6):814-816.
doi: 10.1016/0008-6223(96)89470-X
[40] HECHT D S, HU L, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J]. Advanced Materials, 2011, 23(13):1482-1513.
doi: 10.1002/adma.201003188
[41] SIMMONS T J, HASHIM D, VAJTAI R, et al. Large area-aligned arrays from direct deposition of single-wall carbon nanotube inks[J]. Journal of the American Chemical Society. 2007, 129(33):10088-10089.
doi: 10.1021/ja073745e
[42] 王可, 徐梦雪, 王悦辉. 一种水性导电油墨及其制作方法: 20191031939.1[P].2019-07-23.
WANG Ke, XU Mengxue, WANG Yuehui. One kind of water-based conductive ink and its preparation method: 20191031939.1[P].2019-07-23.
[43] 宁廷州, 张敬芝, 付玲. 导电高分子材料在电子器件中的研究进展[J]. 工程塑料应用, 2019, 47(11):162-167.
NING Yanzhou, ZHANG Jingzhi, FU Ling. Research progress of conductive polymer materials in electronic devices[J]. Engineering Plastics Application, 2019, 47(11):162-167.
[44] HUANG L, EEDUGURALA N, BENASCO A, et al. Open-shell donor-acceptor conjugated polymers with high electrical conductivity[J]. Advanced Functional Materials, 2020, 30(24):1909805.
doi: 10.1002/adfm.v30.24
[45] 葛美珍. 有机导电高分子材料的导电机制分析[J]. 现代盐化工, 2020, 47(1):18-19.
GE Meizhen. Analysis of conductive mechanism of organic conductive polymer materials[J]. Modern Salt and Chemical Industry, 2020, 47(1):18-19.
[46] ZHANG R, PENG B, YUAN Y. Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance[J]. Composites Science and Technology. 2018, 168:118-125.
doi: 10.1016/j.compscitech.2018.09.013
[47] 郑玉婴, 王攀, 张通, 等. 聚3-戊酰基吡咯/多壁碳纳米管复合材料的制备与电导率研究[J]. 材料科学与工艺, 2012, 20(5):111-115.
ZHENG Yuying, WANG Pan, ZHANG Tong, et al. Preparation and study on conductivity of PVPy/MWNTs composites[J]. Materials Science&Technology, 2012, 20(5):111-115.
[48] 姜欣, 赵轩亮, 李晶, 等. 石墨烯导电墨水研究进展:制备方法、印刷技术及应用[J]. 科学通报. 2017, 62(27):3217-3235.
JIANG Xin, ZHAO Xuanliang, LI Jing, et al. Recent developments in graphene conductive ink: Preparation, printing technology and application[J]. Chinese Science Bulletin, 2017, 62(27):3217-3235.
[49] 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(5):160-169.
YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018, 39(5):160-169.
[50] CAREY T, CACOVICH S, DIVITINI G, et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics[J]. Nature Communications, 2017, 8(1):1202.
doi: 10.1038/s41467-017-01210-2
[51] ROJAS J P, TORRES SEVILLA G A, ALFARAJ N, et al. Nonplanar nanoscale fin field effect transistors on textile, paper, wood, stone, and vinylvia soft material-enabled double-transfer printing[J]. ACS Nano, 2015, 9(5):5255-5263.
doi: 10.1021/acsnano.5b00686
[52] 李克伟, 谢森培, 李康, 等. 织物/纸基柔性印刷电子薄膜导电性能研究[J]. 哈尔滨工业大学学报, 2020:1-9.
LI Kewei, XIE Senpei, LI Kang, et al. Study on conductivity of fabric/paper-based flexible printedelectronic films[J]. Journal of Harbin Institute of Technology, 2020:1-9.
[53] ZHU M, LOU M, ABDALLA I, et al. Highly shape adaptive fiber based electronic skin for sensitive joint motion monitoring and tactile sensing[J]. Nano Energy, 2020, 69:104429.
doi: 10.1016/j.nanoen.2019.104429
[54] RAUT N C, AL-SHAMERY K. Inkjet printing metals on flexible materials for plastic and paper electronics[J]. Journal of Materials Chemistry C, 2018, 6(7):1618-1641.
doi: 10.1039/C7TC04804A
[55] 彭军, 李津, 李伟, 等. 银纳米线研究进展与应用[J]. 现代化工, 2019, 39(4):31-35.
PENG Jun, LI Jin, LI Wei, et al. Research progress and application of silver nanowires[J]. Modern Chemical Industry, 2019, 39(4):31-35.
[56] 林佳濛, 万爱兰, 缪旭红. 聚吡咯/银导电涤纶织物的制备及其性能[J]. 纺织学报, 2020, 41(3):113-117.
LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole/silver conductivepolyester fabrics[J]. Journal of Textile Research, 2020, 41(3):113-117.
doi: 10.1177/004051757104100205
[57] KARIM N, AFROJ S, TAN S, et al. All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications[J]. Scientific Reports, 2019, 9(1):8035.
doi: 10.1038/s41598-019-44420-y
[58] SHAHARIAR H, KIM I, SOEWARDIMAN H, et al. Inkjetprinting of reactive silver ink on textiles[J]. ACS Applied Materials & Interfaces, 2019, 11(6):6208-6216.
[59] NECHYPORCHUK O, YU J, NIERSTRASZ V, et al. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6):4793-4801.
[60] KAO H, CHUANG C, CHANG L, et al. Inkjet-printed silver films on textiles for wearable electronics applications[J]. Surface and Coatings Technology, 2019, 362:328-332.
doi: 10.1016/j.surfcoat.2019.01.076
[61] HATTORI Y, FALGOUT L, LEE W, et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing[J]. Advanced Healthcare Materials, 2014, 3(10):1597-1607.
doi: 10.1002/adhm.v3.10
[62] 王威, 郭馨, 刘皓. 智能服装用银纳米线柔性传感器的研究进展[J]. 针织工业, 2020(6):68-71.
WANG Wei, GUO Xin, LIU Hao. Research progress of the flexible silver nanowire sensors for intelligent clothing[J]. Knitting Industries, 2020(6):68-71.
[63] 田明伟, 李增庆, 卢韵静, 等. 纺织基柔性力学传感器研究进展[J]. 纺织学报, 2018, 39(5):170-176.
TIAN Mingwei, LI Zengqing, LU Yunjing, et al. Recent progress of textile-based flexible mechanical sensors[J]. Journal of Textile Research, 2018, 39(5):170-176.
[64] HONG S Y, LEE Y H, PARK H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin[J]. Advanced Materials, 2016, 28(5):930-935.
doi: 10.1002/adma.v28.5
[65] CHEN Y, LIU Y, REN J, et al. Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling with water-based sacrificial coaxial writing[J]. Materials & Design, 2020, 190:108567.
[66] KARIM N, AFROJ S, MALANDRAKI A, et al. All inkjet-printed graphene-based conductive patterns for wearable e-textile applications[J]. Journal of Materials Chemistry C, 2017, 5(44):11640-11648.
doi: 10.1039/C7TC03669H
[67] 莫崧鹰, 何继超. 崭新电子纺织品技术的发展[J]. 纺织导报, 2019(5):34-41.
MO Songying, HE Jichao. Technological development of advanced electronic textiles[J]. China Textile Leader, 2019(5):34-41.
[68] 周梦瑶. 织物基柔性光开关及储能器件的构建及应用[D]. 重庆: 西南大学, 2018:1-15.
ZHOU Mengyao. Construction and application of fabric-based wearable optical switch and energy devices[D]. Chongqing: Southwest University, 2018:1-15.
[69] 王思亮. 可印刷和多功能超级电容器研究[D]. 武汉: 华中科技大学, 2018:1-10.
WANG Siliang. Studies on printable and multifunctional supercapacitors[D]. Wuhan: Huazhong University of Science and Technology, 2018:1-10.
[70] JIANG Y, CHENG M, SHAHBAZIAN YASSAR R, et al. Direct ink writing of wearable thermos-responsive supercapacitors with rGO/CNT composite electrodes[J]. Advanced Materials Technologies, 2019, 4(12):1900691.
doi: 10.1002/admt.v4.12
[71] SHIN S, KUMAR R, ROH J W, et al. High-performance screen-printed thermoelectric films on fabrics[J]. Scientific Reports, 2017, 7(1):7317.
doi: 10.1038/s41598-017-07654-2
[72] KIM S J, WE J H, CHO B J. A wearable thermoelectric generator fabricated on a glass fabric[J]. Energy & Environmental Science, 2014, 7(6):1959.
[1] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[2] 徐晋, 杨鹏程, 肖渊, 胥光申. 织物表面导电线路喷射打印中微滴关键参数的视觉测量[J]. 纺织学报, 2021, 42(07): 137-143.
[3] 梁家豪, 巫莹柱, 刘海东, 黄美林, 蔡瑞燕, 周俊俭, 谢权沛. 表层静电植入与贴伏石墨烯的湿敏聚氨酯纤维制备及其性能[J]. 纺织学报, 2021, 42(06): 63-70.
[4] 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83.
[5] 姜兆辉, 李永贵, 杨自涛, 郭增革, 张战旗, 齐元章, 金剑. 聚合物基石墨烯复合纤维及其纺织品研究进展[J]. 纺织学报, 2021, 42(03): 175-180.
[6] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[7] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9.
[8] 肖渊, 王盼, 张威, 张成坤. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
[9] 庞雅莉, 孟佳意, 李昕, 张群, 陈彦锟. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(09): 1-7.
[10] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[11] 陈慧, 王玺, 丁辛, 李乔. 基于全织物传感网络的温敏服装设计[J]. 纺织学报, 2020, 41(03): 118-123.
[12] 吴荣辉, 马丽芸, 张一帆, 刘向阳, 于伟东. 银纳米线涂层的编链结构纱线拉伸应变传感器[J]. 纺织学报, 2019, 40(12): 45-49.
[13] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[14] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[15] 曹机良 王潮霞. 石墨烯整理蚕丝织物的导电性能[J]. 纺织学报, 2018, 39(12): 84-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!