纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 71-77.doi: 10.13475/j.fzxb.20200902207

所属专题: 阻燃纤维及纺织品

• 纤维材料 • 上一篇    下一篇

微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用

文玉峰, 马晓谱, 盛方园, 朱志国()   

  1. 北京服装学院 材料设计与工程学院, 北京 100029
  • 收稿日期:2020-09-09 修回日期:2021-03-08 出版日期:2021-06-15 发布日期:2021-06-28
  • 基金资助:
    国家重点研发计划专项(2016YFB0302901)

Preparation of microencapsulated intumescent flame retardant and its use in polylactic acid

WEN Yufeng, MA Xiaopu, SHENG Fangyuan, ZHU Zhiguo()   

  1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2020-09-09 Revised:2021-03-08 Published:2021-06-15 Online:2021-06-28

摘要:

为提高阻燃剂的阻燃效率,以聚磷酸铵(A)、微晶纤维素(C)和三聚氰胺氰尿酸盐(M)为基础组分,利用球磨共混和原位合成技术制备了微胶囊化膨胀型阻燃剂M(A&C),并采用熔融共混方法制备阻燃改性聚乳酸(PLA/M(A&C))。利用热重分析仪、红外光谱仪、扫描电子显微镜及X射线光电子能谱仪等对M(A&C)的结构,阻燃改性PLA的热性能、阻燃性能和残炭形貌进行表征与分析。研究结果表明:在阻燃剂添加量保持相等(质量分数分别为3%、5%以及10%)时,PLA/M(A&C)样品的阻燃性均优于四组分直接共混样品PLA/(M+A+C),前者的极限氧指数分别为27%、29%和31.5%,均明显高于后者的24%,25%和28.5%;PLA/M(A&C)-10的综合阻燃性能较佳,垂直燃烧等级为V-0,热释放速率峰值为313 kW/m2,总热释放量为54 MJ/m2,残炭量为16.1%。

关键词: 膨胀型阻燃剂, 微胶囊, 聚乳酸, 阻燃性能

Abstract:

In order to improve the flame retardant efficiency, ammonium polyphosphate (marked as A), microcrystal cellulose (marked as C) and melamine cyanourate (marked as M) were selected as the basic components to prepare microencapsulated intumescent flame retardants, noted as M(A&C), via combination of ball-milling and in-situ synthesis techniques. M(A&C) was subsequently incorporated into polylactic acid (PLA) via melt blending method to get the PLA/M(A&C) samples. The structure of MA&C, thermal properties, flame retardancyand residual carbon morphology of flame retardantsamples were characterized with the help of thermogravimetric, Fourier transform infrared, X-ray photoelectron spectroscopy and scanning electron microscope. The results show that PLA/M(A&C) demonstrates better flame retardant ability than PLA/(M+A+C), with the same loadings of flame retardant (3%, 5% and 10% mass fraction, respectively). The limit oxygen index of the former samples was 27%, 29%, and 31.5%, respectively, which is obviously higher than those of the latter samples (24%, 25%, anf 28.5%, respectively). The overall flame retardancy of PLA/M(A&C)-10 is found excellent, achieving UL-94 V-0 grade. The peak heat release rate, total heat release and char residue show obvious flame retardancy properties, with the values of 313 kW/m2, 54 MJ/m2, and 16.1%, respectively.

Key words: intumescent flame retardant, microencapsul, polylactic acid, flame retardant property

中图分类号: 

  • TQ314.24

图1

阻燃剂M(A&C)的制备示意图"

表1

阻燃PLA共混物的配方"

样品名称 PLA M(A&C) (M+A+C)
PLA 100 0 0
PLA/M(A&C)-3 97 3 0
PLA/M(A&C)-5 95 5 0
PLA/M(A&C)-10 90 10 0
PLA/(M+A+C)-3 97 0 3
PLA/(M+A+C)-5 95 0 5
PLA/(M+A+C)-10 90 0 10

图2

阻燃剂APP、MCA、A&C及M(A&C)的红外谱图"

图3

APP、A&C及M(A&C)的SEM照片"

图4

阻燃剂APP、A&C及M(A&C)的XPS全谱图"

表2

各阻燃剂的热失重数据"

样品名称 T5%/℃ Tmax/℃ 质量保留率(800 ℃)/%
APP 314.5 610.1 24.9
A+C 292.8 595.3 18.3
A&C 223.2 573.1 24.1
M+A+C 290.9 341.2 26.6
M(A&C) 249.1 295.5 37.6

图5

PLA及阻燃PLA样品的DSC(a)和TG(b)曲线"

图6

PLA及阻燃PLA样品的极限氧指数"

表3

PLA及阻燃PLA样品的垂直燃烧结果"

样品名称 t1/s t2/s 是否点燃
脱脂棉
熔滴 UL-94
等级
PLA >30 ★★★★★ /
PLA/APP-10 6.9 3.9 ★★★★ V-2
PLA/(M+A+C)-3 12.8 8.9 ★★★★★ /
PLA/(M+A+C)-5 11.5 4.7 ★★★★ V-2
PLA/(M+A+C)-10 6.3 1.7 ★★★ V-2
PLA/M(A&C)-3 12.1 3.0 ★★★★ V-2
PLA/M(A&C)-5 4.1 1.5 ★★★ V-2
PLA/M(A&C)-10 1.3 0.9 V-0

表4

PLA及阻燃PLA样品的锥形量热测试结果"

样品名称 TTI/
s
pHRR/
(kW·m-2)
THR/
(MJ·m-2)
残炭
量/%
FGI/FPI
PLA 67 437 73.2 3.7 2.36/0.153
PLA/APP-10 64 443 62.0 10.6 2.70/0.145
PLA/(M+A+C)-10 64 360 62.5 8.4 2.12/0.178
PLA/M(A&C)-10 56 313 54.0 16.1 1.93/0.179

图7

PLA及阻燃PLA样品燃烧后的残炭微观形貌(×1 000)"

图8

PLA和PLA/M(A&C)-10残炭的XPS宽谱图"

[1] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(5):12-17.
MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly ( 3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibers[J]. Journal of Textile Research, 2019, 40(5):12-17.
[2] 余娟娟, 刘淑强, 吴改红, 等. 玄武岩织物增强聚乳酸复合材料的制备及其拉伸断裂性能[J]. 纺织学报, 2019, 40(2):82-86.
YU Juanjuan, LIU Shuqiang, WU Gaihong, et al. Preparation and tensile fracture properties of basalt fabric reinforced polylactic acid composites[J]. Journal of Textile Research, 2019, 40(2):82-86.
[3] ZHAO Xiaomin, GUERRERO Francisco Reyes, LLORCA J, et al. New superefficiently flame-retardant bioplastic poly (lactic acid): flammability, thermal decomposition behavior, and tensile properties[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(1):202-209.
[4] FENG Jiabing, SUN Yiqi, SONG Pingan, et al. Fire-resistant, strong, and green polymer nanocomposites based on poly (lactic acid) and core-shell nanofibrous flame retardants[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9):7894-7904.
[5] LONG Lijuan, CHANG Qifeng, HE Wentao, et al. Effects of bridged DOPO derivatives on the thermal stability and flame retardant properties of poly (lactic acid)[J]. Polymer Degradation and Stability, 2017, 139:55-66.
doi: 10.1016/j.polymdegradstab.2017.03.016
[6] WU Ningjing, FU Guoliang, YANG Yue, et al. Fire safety enhancement of a highly efficient flame retardant poly (phenylphosphoryl phenylenediamine) in biodegradable poly (lactic acid)[J]. Journal of Hazardous Materials, 2019, 363:1-9.
doi: S0304-3894(18)30777-5 pmid: 30300772
[7] SONG Yan, ZONG Xu, WANG Nan, et al. Preparation of γ-divinyl-3-aminopropyltriethoxysilane modified lignin and its application in flame retardant poly (lactic acid)[J]. Materials, 2018, 11(9):1505-1513.
doi: 10.3390/ma11091505
[8] SHAN Xueying, SONG Lei, XING Weiyi, et al. Effect of nickel-containing layered double hydroxides and cyclophosphazene compound on the thermal stability and flame retardancy of poly (lactic acid)[J]. Industrial & Engineering Chemistry Research, 2012, 51(40):13037-13045.
doi: 10.1021/ie300589p
[9] KANG Benhao, LU Xiang, QU Jinping, et al. Synergistic effect of hollow glass beads and intumescent flame retardant on improving the fire safety of biodegradable poly (lactic acid)[J]. Polymer Degradation and Stability, 2019, 164:167-176.
doi: 10.1016/j.polymdegradstab.2019.04.013
[10] 魏丽菲, 朱志国, 靳昕怡, 等. 基于三(2-羟乙基)异氰尿酸酯的膨胀型阻燃剂对聚合物燃烧性能的影响[J]. 纺织学报, 2017, 38(9):24-31.
WEI Lifei, ZHU Zhiguo, JIN Xinyi, et al. Influence of tris (2-hydroxyethyl) isocyanurate-based intrmescent flame retardants on combustion performance of poly-mers[J]. Journal of Textile Research, 2017, 38(9):24-31.
[11] WANG Chao, WU Yicheng, LI Yingchun, et al. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant[J]. Polymers for Advanced Technologies, 2018, 29(1):668-676.
doi: 10.1002/pat.v29.1
[12] LIU Xiaodong, SUN Jun, ZHANG Sheng, et al. Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane[J]. Polymer Degradation and Stability, 2019, 160:168-176.
doi: 10.1016/j.polymdegradstab.2018.12.019
[13] RAN Guowen, LIU Xiaodong, GUO Jia, et al. Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate[J]. Composites Part B: Engineering, 2019, 173:106-113.
[14] ZHU Min, ZHANG Yang, SHENG Haibo, et al. Effect carbon black microencapsulated ammonium polyphosphate on the flame retardancy and mechanical properties of polyurethane composites[J]. Polymer-Plastics Technology and Materials, 2019, 279:1-12.
[15] ZHU Jianqiang, LU Xin, YANG Huayu, et al. Vinyl polysiloxane microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene[J]. Journal of Polymer Research, 2018, 25(4):107-116.
doi: 10.1007/s10965-018-1505-7
[1] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[2] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[3] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[4] 曾凡鑫, 秦宗益, 沈玥莹, 陈园余, 胡铄. 自熄性棉织物的喷涂辅助层层自组装法制备及其阻燃性能[J]. 纺织学报, 2021, 42(01): 103-111.
[5] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[6] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
[7] 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45.
[8] 温馨, 张须臻, 李勇, 黄文健, 卢晨. 水引发L-丙交酯开环聚合工艺研究[J]. 纺织学报, 2020, 41(12): 21-25.
[9] 王亮, 马晓光, 李俊君, 杨州. 热敏变色微胶囊的变色色谱拓展及其应用[J]. 纺织学报, 2020, 41(09): 88-94.
[10] 盛明非, 张丽平, 付少海. 基于染料掺杂型液晶微胶囊的电刺激响应智能纺织品的制备及其性能[J]. 纺织学报, 2020, 41(08): 63-68.
[11] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[12] 许黛芳. 磷酸改性芳纶对聚氨酯硬质泡沫阻燃抑烟性能的影响[J]. 纺织学报, 2020, 41(05): 30-37.
[13] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[14] 王森, 陈英. 纳米TiO2稳定乳液的制备及其在微胶囊制备中的应用[J]. 纺织学报, 2020, 41(05): 105-111.
[15] 党丹旸, 崔灵燕, 王亮, 刘雍. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41(02): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!