纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 8-17.doi: 10.13475/j.fzxb.20210206310

• 纺织科技新见解学术沙龙专栏: 纤维微塑料削减与可持续发展 • 上一篇    下一篇

纤维微塑料的研究现状及其削减策略

周大旺1,2, 乌婧3, 杨建平1,2, 陈烨1,2, 吉鹏3, 王华平1,2,3()   

  1. 1. 东华大学 材料科学与工程学院, 上海 201620
    2. 东华大学 纤维改性材料国家重点实验室, 上海 201620
    3. 东华大学 纺织产业关键技术协同创新中心, 上海 201620
  • 收稿日期:2021-02-25 修回日期:2021-03-23 出版日期:2021-06-15 发布日期:2021-06-25
  • 通讯作者: 王华平
  • 作者简介:周大旺(1997—),男,硕士生。主要研究方向为微塑料降解性能研究。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232021A-02)

Research progress of fibrous microplastics and mitigation strategies

ZHOU Dawang1,2, WU Jing3, YANG Jianping1,2, CHEN Ye1,2, JI Peng3, WANG Huaping1,2,3()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    3. Co-Innovation Center of Textile Industry, Donghua University, Shanghai 201620, China
  • Received:2021-02-25 Revised:2021-03-23 Published:2021-06-15 Online:2021-06-25
  • Contact: WANG Huaping

摘要:

纤维微塑料是一种重要的微塑料存在形态,对环境生态、人民健康存在极大潜在风险,也对化纤行业绿色可持续发展提出严峻挑战,亟待对其深入了解并提出削减、管控方案。介绍了纤维微塑料的基本概念和研究现状,阐述其主要产生来源,揭示纤维微塑料从织物表面脱落的影响因素,概述了其生态危害及作用对象,归纳整理现阶段针对纤维微塑料污染问题的削减策略。提出应重点发展纺织品循环再生资源化利用技术体系、生物可降解纤维技术体系、纺织品耐污易清洗技术以及强化过滤截留效率等系列技术,为提升化纤行业绿色制造能力提供解决思路。

关键词: 塑料, 微塑料, 纤维微塑料, 再生循环利用, 生物降解, 削减策略

Abstract:

Fiber-based microplastics (FMPs) is an important form of microplastics, which has great potential risks to the environment, ecology and human health. It also poses a severe challenge to the sustainable development of chemical fiber industry. It is urgent to develop a deep understanding of it and put forward reduction and control schemes. This paper introduced the basic concept of fiber-based microplastics, expounded its main sources, revealed the influencing factors of fiber microplastics falling off from the fabric surface, summarized its ecological hazards and objects, and proposed the reduction strategies for fiber microplastics pollution at the present stage. A series of measures were provoked to focus on the development of the technology system of recycling and recycling of textiles, the technology system of biodegradable fibers, the technology of pollution resistance and easy-cleaning of textiles, and the enhancement of filtration interception efficiency. In order to reduce the ecological hazards brought by the development of China's chemical fiber and textile industry and to improve the green manufacturing capacity of the chemical fiber industry, the structural and functional design of fiber and textile, household washing and sewage treatment devices are taken as the starting points.

Key words: plastic, microplastic, fiber microplastic, recycle and reuse, biodegradation, mitigation strategy

中图分类号: 

  • TS102

表1

不同滤除装置纤维微塑料释放情况比较"

滤除装置 数量/(颗·L-1) 质量/(mg·L-1) 长度/mm
未采用任何截留装置 4 800±820 1.99±0.45 1.5±0.5
洗衣球(Cora Ball) 3 580±390 1.89±0.42 1.3±0.1
Lint LUV-R过滤器 648±165 0.40±0.09 0.4±0.1
[1] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: a review[J]. Marine Pollution Bulletin, 2011, 62(12):2588-2597.
doi: 10.1016/j.marpolbul.2011.09.025
[2] SIVAN A. New perspectives in plastic biodegrada-tion[J]. Current Opinion in Biotechnology, 2011, 22(3):422-426.
doi: 10.1016/j.copbio.2011.01.013
[3] 求革庆. 塑料[J]. 造船技术, 1973, 2: 58,59-62.
QIU Geqing. Plastic[J]. Marine Technology, 1973, 2: 58,59-62.
[4] ANDRADY A L. The plastic in microplastics: a review[J]. Marine Pollution Bulletin, 2017, 119(1):12-22.
doi: 10.1016/j.marpolbul.2017.01.082
[5] LODER M G J, IMHOF H K, LADEHOFF M, et al. Enzymatic purification of microplastics in environmental samples[J]. Environmental Science & Technology, 2017, 51(24):14283-14292.
doi: 10.1021/acs.est.7b03055
[6] SANCHEZ-NIEVA J, PERALES J A, GONZALEZ-LEAL J M, et al. A new analytical technique for the extraction and quantification of microplastics in marine sediments focused on easy implementation and repeatability[J]. Analytical Methods, 2017, 9(45):6371-6378.
doi: 10.1039/C7AY01800B
[7] ALIMBA C G, FAGGIO C. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile[J]. Environmental Toxicology and Pharmacology, 2019, 68:61-74.
doi: 10.1016/j.etap.2019.03.001
[8] GEYER R, JAMBECK J R, LAW K L, et al. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7):e1700782.
doi: 10.1126/sciadv.1700782
[9] LAU W W Y, SHIRAN Y, BAILEY R M, et al. Evaluating scenarios toward zero plastic pollution[J]. Science, 2020, 369(6510):1455-1461.
doi: 10.1126/science.aba9475
[10] RENNER G, SCHMIDT T C, SCHRAM J A. New chemometric approach for automatic identification of microplastics from environmental compartments based on FT-IR spectroscopy[J]. Analytical Chemistry, 2017, 89(22):12045-12053.
doi: 10.1021/acs.analchem.7b02472
[11] THUSHARI G G N, SENEVIRATHNAL J D M, YAKUPITIYAGE A, et al. Effects of microplastics on sessile invertebrates in the eastern coast of Thailand: an approach to coastal zone conservation[J]. Marine Pollution Bulletin, 2017, 124(1):349-355.
doi: 10.1016/j.marpolbul.2017.06.010
[12] LAN Y, CHEN J L, ZHANG H, et al. Fe/Fe3C nanoparticle-decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction [J]. Journal of Materials Chemistry A, 2020, 8(31):15853-15863.
doi: 10.1039/D0TA02317E
[13] ABAYOMI O A, RANGE P, Al-GHOUTI M A, et al. Microplastics in coastal environments of the Arabian Gulf[J]. Marine Pollution Bulletin, 2017, 124(1):181-188.
doi: 10.1016/j.marpolbul.2017.07.011
[14] HURLEY R R, WOODWARD J C, ROTHWELL J J. Ingestion of microplastics by freshwater tubifex worms[J]. Environmental Science & Technology, 2017, 51(21):12844-12851.
doi: 10.1021/acs.est.7b03567
[15] KIM D, CHAE Y, AN Y J. Mixture toxicity of nickel and microplastics with different functional groups on daphnia magna[J]. 2017, 51(21):12852-12858.
[16] KETTNER M T, ROJAS-JIMENEZ K, OBERBECKMANN S, et al. Microplastics alter composition of fungal communities in aquatic ecosy-stems[J]. Environmental Microbiology, 2017, 19(11):4447-4459.
doi: 10.1111/emi.2017.19.issue-11
[17] BROWNE M A, GALLOWAY T S, THOMPSON R C. Spatial patterns of plastic debris along estuarine shorelines[J]. Environmental Science & Technology, 2010, 44(9):3404-3409.
doi: 10.1021/es903784e
[18] LAW K L, THOMPSON R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145.
doi: 10.1126/science.1254065
[19] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: where is all the plastic? [J]. Science, 2004, 304(5672):838.
doi: 10.1126/science.1094559
[20] 扈瀚文, 杨萍萍, 薛含含, 等. 环境微塑料污染的研究进展[J]. 合成材料老化与应用, 2020, 49(1):97-102.
HU Hanwen, YANG Pingping, XUE Hanhan, et al. Research progress on environmental pollution of microplastics[J]. Synthetic Materials Aging and Application, 2020, 49(1):97-102.
[21] ZOBKOV M B, ESIUKOVA E E. Evaluation of the munich plastic sediment separator efficiency in extraction of microplastics from natural marine bottom sediments[J]. Limnology and Oceanography-Methods, 2017, 15(11):967-978.
doi: 10.1002/lom3.10217
[22] CAI L Q, WANG J D, PENG J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence[J]. Environmental Science and Pollution Research, 2017, 24(32):24928-24935.
doi: 10.1007/s11356-017-0116-x
[23] WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chemical Society Reviews, 2019, 48(7):2109-2125.
doi: 10.1039/C8CS00542G
[24] MILLER M E, KROON F J, MOTTI C A. Recovering microplastics from marine samples: a review of current practices[J]. Marine Pollution Bulletin, 2017, 123(1/2):6-18.
doi: 10.1016/j.marpolbul.2017.08.058
[25] LEI K, QIAO F, LIU Q, et al. Microplastics releasing from personal care and cosmetic products in China[J]. Marine Pollution Bulletin, 2017, 123(1/2):122-126.
doi: 10.1016/j.marpolbul.2017.09.016
[26] HIDAYATURRAHMAN H, LEE T G. A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process[J]. Marine Pollution Bulletin, 2019, 146(C):696-702.
[27] SHIMIZU K, SOKOLOV S V, KATELHON E, et al. In situ detection of microplastics: single microparticle-electrode impacts[J]. Electroanalysis, 2017, 29(10):2200-2207.
doi: 10.1002/elan.v29.10
[28] COMNEA-STANCU I R, WIELAND K, RAMER G, et al. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier Transform Infrared Spectros-copy[J]. Applied Spectroscopy, 2017, 71(5):939-950.
doi: 10.1177/0003702816660725
[29] LOHMANN R. Microplastics are not important for the cycling and bioaccumulation of organic pollutants in the oceans but should microplastics be considered POPs themselves? [J]. Integrated Environmental Assessment and Management, 2017, 13(3):460-465.
doi: 10.1002/ieam.1914
[30] LAMBERT S, SCHERER C, WAGNER M. Ecotoxicity testing of microplastics: considering the heterogeneity of physicochemical properties[J]. Integrated Environmental Assessment and Management, 2017, 13(3):470-475.
doi: 10.1002/ieam.1901
[31] 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8):3333-3343.
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8):3333-3343.
[32] TANG Y Q, LIU Y G, CHEN Y, et al. A review: research progress on microplastic pollutants in aquatic environments[J]. The Science of the Total Environment, 2020, 766:142572.
doi: 10.1016/j.scitotenv.2020.142572
[33] MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808.
doi: 10.1021/acs.est.5b05416
[34] KWON J H, CHANG S, HONG S H, et al. Microplastics as a vector of hydrophobic contaminants: importance of hydrophobic additives[J]. Integrated Environmental Assessment and Management, 2017, 13(3):494-499.
doi: 10.1002/ieam.1906
[35] KAY P, HISCOE R, MOBERLEY I, et al. Wastewater treatment plants as a source of microplastics in river catchments[J]. Environmental Science and Pollution Research, 2018, 25(20):20264-20267.
doi: 10.1007/s11356-018-2070-7
[36] DESFORGES J P W, GALBRAITH M, DANGERFIELD N, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean[J]. Marine Pollution Bulletin, 2014, 79(1/2):94-99.
doi: 10.1016/j.marpolbul.2013.12.035
[37] MASON S A Plastics, plastics everywhere[J]. American Scientist, 2019, 107(5):284-287.
doi: 10.1511/2019.107.5.284
[38] 赵永霞. 全球化纤产业的最新进展(上)[J]. 纺织导报, 2019(2):25-26,28-36, 38.
ZHAO Yongxia. Latest developments of world man-made fiber industry (I)[J]. China Textle Leader, 2019(2):25-26,28-36, 38.
[39] KOLBE S, 曹传枝. 令人困惑的微塑料颗粒或微纤维概念[J]. 国际纺织导报, 2019, 47(7):56.
KOLBE S, CAO Chuanzhi. Confusing concept of microplastic particles or microfibers[J]. Melliand China, 2019, 47(7):56.
[40] 薛丽媛, 黄锋林. 纺织品微纤维的研究现状与防治措施[J]. 材料导报, 2020, 34(S2):1567-1571.
XUE Liyuan, HUANG Fenglin. Research status and prevention of textile microfibers[J]. Materials Reports, 2020, 34(S2):1567-1571.
[41] ZHOU D W, CHEN J L, WU J, et al. Biodegradation and catalytic-chemical degradation strategies to mitigate microplastic pollution[J]. Sustainable Materials and Technologies, 2021, 28:e00251.
doi: 10.1016/j.susmat.2021.e00251
[42] DE FALCO F, COCCA M, AVELLA M, et al. Microfiber release to water, via laundering, and to air, via everyday use: a comparison between polyester clothing with differing textile parameters[J]. Environmental Science & Technology, 2020, 54(6):3288-3296.
doi: 10.1021/acs.est.9b06892
[43] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179.
doi: 10.1021/es201811s
[44] DUBAISH F, LIEBEZEIT G. Suspended microplastics and black carbon particles in the jade system, southern north sea[J]. Water Air and Soil Pollution, 2013, 224(2):1-8.
[45] SEIDENSTICKER S, ZARFL C, CIRPKAL O A, et al. Shift in mass transfer of wastewater contaminants from microplastics in the presence of dissolved subs-tances[J]. Environmental Science & Technology, 2017, 51(21):12254-12263.
doi: 10.1021/acs.est.7b02664
[46] NAKKI P, SETALA O, LEHTINIEMI M. Bioturbation transports secondary microplastics to deeper layers in soft marine sediments of the northern Baltic sea[J]. Marine Pollution Bulletin, 2017, 119(1):255-261.
doi: 10.1016/j.marpolbul.2017.03.065
[47] 侯青桐, 许霞, 薛银刚, 等. 纺织印染废水处理工艺中微纤维分离及其微观特征[J]. 中国给水排水, 2019, 35(3):13-18.
HOU Qingtong, XU Xia, XUE Yingang, et al. Separation and surface microcosmic characteristics of microfibers in the treatment process of textile printing and dyeing wastewater[J]. China Water & Wastewater, 2019, 35(3):13-18.
[48] GONZALEZ-PLEITER M, VELAZQUEZ D, EDO C, et al. Fibers spreading worldwide: microplastics and other anthropogenic litter in an Arctic freshwater lake[J]. Science of the Total Environment, 2020, 722:137904.
doi: 10.1016/j.scitotenv.2020.137904
[49] NAJI A, ESMAILI Z, KHAN F R. Plastic debris and microplastics along the beaches of the Strait of Hormuz, Persian Gulf[J]. Marine Pollution Bulletin, 2017, 114(2):1057-1062.
doi: 10.1016/j.marpolbul.2016.11.032
[50] XU X, HOU Q T, XUE Y G, et al. Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant[J]. Water Science and Technology, 2018, 78(10):2046-2054.
doi: 10.2166/wst.2018.476
[51] LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142:75-85.
doi: 10.1016/j.watres.2018.05.034
[52] MALLOS N J, LEONARD G H. In Response: Minimize, manage, and mitigate microplastics in the ocean: a nongovernmental organization perspective[J]. Environmental Toxicology and Chemistry, 2017, 36(9):2259-2261.
doi: 10.1002/etc.v36.9
[53] FADARE O O, OKOFFO E D. Covid-19 face masks: a potential source of microplastic fibers in the environ-ment[J]. Science of the Total Environment, 2020, 737:140279.
doi: 10.1016/j.scitotenv.2020.140279
[54] MAC NAMARA C, GABRIELE A, AMADOR C, et al. Dynamics of textile motion in a front-loading domestic washing machine[J]. Chemical Engineering Science, 2012, 75:14-27.
doi: 10.1016/j.ces.2012.03.009
[55] CESA F S, TURRA A, BARUQUE-RAMOS J. Synthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washings[J]. Science of the Total Environment, 2017, 598:1116-1129.
doi: 10.1016/j.scitotenv.2017.04.172
[56] YANG L B, QIAO F, LEI K, et al. Microfiber release from different fabrics during washing[J]. Environmental Pollution, 2019, 249:136-143.
doi: 10.1016/j.envpol.2019.03.011
[57] KRUSCHWITZ A, KARLE A, SCHMITZ A, et al. Consumer laundry practices in Germany[J]. International Journal of Consumer Studies, 2014, 38(3):265-277.
doi: 10.1111/ijcs.2014.38.issue-3
[58] HARTLINE N L, BRUCE N J, KARBA S N, et al. Microfiber masses recovered from conventional machine washing of new or aged garments[J]. Environmental Science & Technology, 2016, 50(21):11532-11538.
doi: 10.1021/acs.est.6b03045
[59] KELLY M R, LANT N J, KURR M, et al. Importance of water-volume on the release of microplastic fibers from laundry[J]. Environmental Science & Technology, 2019, 53(20):11735-11744.
doi: 10.1021/acs.est.9b03022
[60] PIRC U, VIDMAR M, MOZER A, et al. Emissions of microplastic fibers from microfiber fleece during domestic washing[J]. Environmental Science and Pollution Research, 2016, 23(21):22206-22211.
doi: 10.1007/s11356-016-7703-0
[61] NAPPER I E, THOMPSON R C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing condi-tions[J]. Marine Pollution Bulletin, 2016, 112(1/2):39-45.
doi: 10.1016/j.marpolbul.2016.09.025
[62] CAI Y P, YANG T, MITRANO D M, et al. Systematic study of microplastic fiber release from 12 different polyester textiles during washing[J]. Environmental Science & Technology, 2020, 54(8):4847-4855.
doi: 10.1021/acs.est.9b07395
[63] PROVENCHER J F, VERMAIRE J C, AVERY-GOMM S, et al. Garbage in guano? microplastic debris found in faecal precursors of seabirds known to ingest plas-tics[J]. Science of the Total Environment, 2018, 644:1477-1484.
doi: 10.1016/j.scitotenv.2018.07.101
[64] AU S Y, LEE C M, WEINSTEIN J E, et al. Trophic transfer of microplastics in aquatic ecosystems: identifying critical research needs[J]. Integrated Environmental Assessment and Management, 2017, 13(3):505-509.
doi: 10.1002/ieam.1907
[65] JOVANOVIC B. Ingestion of microplastics by fish and its potential consequences from a physical perspective[J]. Integrated Environmental Assessment and Management, 2017, 13(3):510-515.
doi: 10.1002/ieam.1913
[66] YOKOTA K, WATERFIELD H, HASTINGS C, et al. Finding the missing piece of the aquatic plastic pollution puzzle: interaction between primary producers and microplastics[J]. Limnology and Oceanography Letters, 2017, 2(4):91-104.
doi: 10.1002/lol2.v2.4
[67] SEDLAK D. Three lessons for the microplastics vo-yage[J]. Environmental Science & Technology, 2017, 51(14):7747-7748.
doi: 10.1021/acs.est.7b03340
[68] MATHALON A, HILL P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia[J]. Marine Pollution Bulletin, 2014, 81(1):69-79.
doi: 10.1016/j.marpolbul.2014.02.018
[69] KNOLL S, DECOSTERE A, DECLERCQ A M. Microplastics: minuscule particles with big consequences? [J]. Vlaams Diergeneeskundig Tijdschrift, 2017, 86(4):203-212.
doi: 10.21825/vdt.v86i4.16181
[70] KAYA A T, YURTSEVER M, BAYRAKTAR S C. Ubiquitous exposure to microfiber pollution in the air[J]. European Physical Journal Plus, 2018, 133(11):1-9.
doi: 10.1140/epjp/i2018-11804-8
[71] ABSHER T M, FERREIRA S L, KERN Y, et al. Incidence and identification of microfibers in ocean waters in Admiralty Bay, Antarctica[J]. Environmental Science and Pollution Research, 2019, 26(1):292-298.
doi: 10.1007/s11356-018-3509-6
[72] ZHANG G S, ZHANG F X, LI X T. Effects of polyester microfibers on soil physical properties: perception from a field and a pot experiment[J]. Science of the Total Environment, 2019, 670:1-7.
doi: 10.1016/j.scitotenv.2019.03.149
[73] WAN Y, WU C X, XUE Q, et al. Effects of plastic contamination on water evaporation and desiccation cracking in soil[J]. Science of the Total Environment, 2019, 654:576-582.
doi: 10.1016/j.scitotenv.2018.11.123
[74] BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19):11496-11506.
doi: 10.1021/acs.est.9b03304
[75] CHISADA S, YOSHIDA M, KARITA K, et al. Ingestion of polyethylene microbeads affects the growth and reproduction of medaka, Oryzias latipes[J]. Environmental Pollution, 2019, 254:113094.
doi: 10.1016/j.envpol.2019.113094
[76] KEDZIERSKI M, LE TILLY V, BOURSEAU P, et al. Microplastics elutriation system: part A: numerical modeling[J]. Marine Pollution Bulletin, 2017, 119(2):151-161.
doi: 10.1016/j.marpolbul.2017.04.060
[77] MCDEVITT J P, CRIDDLE C S, MORSE M, et al. Addressing the issue of microplastics in the wake of the microbead-free waters act: a new standard can facilitate improved policy[J]. Environmental Science & Technology, 2017, 51(12):6611-6617.
doi: 10.1021/acs.est.6b05812
[78] WATTS A J R, URBINA M A, CORR S, et al. Ingestion of plastic microfibers by the crab carcinus maenas and its effect on food consumption and energy balance[J]. Environmental Science & Technology, 2015, 49(24):14597-14604.
doi: 10.1021/acs.est.5b04026
[79] MCILWRAITH H K, LIN J, ERDLE L M, et al. Capturing microfibers-marketed technologies reduce microfiber emissions from washing machines[J]. Marine Pollution Bulletin, 2019, 139:40-45.
doi: 10.1016/j.marpolbul.2018.12.012
[80] FRANCESCA D F, GENNARO G, ROBERTO A, et al. Pectin based finishing to mitigate the impact of microplastics released by polyamide fabrics[J]. Carbohydrate Polymers, 2018, 198:175-180.
doi: 10.1016/j.carbpol.2018.06.062
[81] FRANCESCA D F, MARIACRISTINA C, VINCENZO G, et al. Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings[J]. Polymer Degradation and Stability, 2019, 165:110-116.
doi: 10.1016/j.polymdegradstab.2019.05.001
[1] 陈俊良, 乌婧, 王华平, 杨建平. 水环境中纤维微塑料去除技术研究展望[J]. 纺织学报, 2021, 42(06): 18-25.
[2] 韩其洋, 吴雄英, 丁雪梅. 合成纤维纺织品家庭洗涤释放纤维微塑料研究进展[J]. 纺织学报, 2021, 42(06): 35-40.
[3] 徐晨烨, 顾春节, 倪亦凡, 沈忱思, 王华平, 乌婧, 李方. 纤维微塑料在印染废水产排污环节的赋存特征[J]. 纺织学报, 2021, 42(06): 26-34.
[4] 田政 潘莉莎 陈龙敏 陈喆 徐鼐 庞素娟 林强. 可生物降解聚碳酸亚丙酯/聚丙烯非织造布切片制备及其性能[J]. 纺织学报, 2013, 34(7): 15-21.
[5] 马艳霞 肖长发 徐乃库 赵健. 光/生物双降解聚乙烯纤维的结构与性能[J]. 纺织学报, 2012, 33(11): 1-5.
[6] 曲微微.;俞建勇.;刘丽芳.;李发学.;刘国忠. 可降解黄麻/PBS复合材料的结构与力学性能[J]. 纺织学报, 2008, 29(8): 52-55.
[7] 张小英. 土壤填埋降解后丝素纤维的微观结构和力学性能[J]. 纺织学报, 2008, 29(2): 7-10.
[8] 张健飞;邵改芹. 紫外线照射白腐菌对己内酰胺分解及聚酰胺6降解的影响[J]. 纺织学报, 2008, 29(1): 9-13.
[9] 张小英;杭伟明;周燕. 纤维素纤维和蛋白质纤维降解特性的分析[J]. 纺织学报, 2007, 28(10): 9-11.
[10] 张惠珍.;刘白玲;罗荣;吴永忠;黎园. 聚乙烯醇缩醛产品的生物降解性[J]. 纺织学报, 2006, 27(7): 1-3.
[11] 陈驰;但卫华.;曾睿.;米贞健;曲健健;林海. 可生物降解功能纤维的研究进展[J]. 纺织学报, 2006, 27(7): 100-103.
[12] 洪耀. 水溶性高分子纺织浆料的生物降解功能[J]. 纺织学报, 2006, 27(6): 104-106.
[13] 吴赞敏;吕彤;翁亮;戴晓红. 生物菌对活性染料的脱色研究[J]. 纺织学报, 2006, 27(5): 45-48.
[14] 罗荣;刘白玲;张惠珍;雷德松;黎园;吴永忠. 聚乙烯醇氧化改性对其生物降解的影响[J]. 纺织学报, 2006, 27(12): 37-40.
[15] 张瑜;朱军. 可生物降解医用非织造布的研发[J]. 纺织学报, 2005, 26(5): 114-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!