纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 1-10.doi: 10.13475/j.fzxb.20201001410

• 特约专栏:纺织材料阻燃新技术 •    下一篇

碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响

顾伟文1, 王文庆1,2,3, 魏丽菲1,4, 孙晨颖1, 郝聃1, 魏建斐1,2,3, 王锐1,2,3()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.北京市纺织纳米纤维工程技术研究中心, 北京 100029
    4.四川大学 高分子研究所, 四川 成都 610065
  • 收稿日期:2020-10-07 修回日期:2021-03-18 出版日期:2021-07-15 发布日期:2021-07-22
  • 通讯作者: 王锐
  • 作者简介:顾伟文(1995—),女,硕士生。主要研究方向为阻燃聚酯纤维材料制备。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309000);北京学者项目(RCQJ20303)

Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate)

GU Weiwen1, WANG Wenqing1,2,3, WEI Lifei1,4, SUN Chenying1, HAO Dan1, WEI Jianfei1,2,3, WANG Rui1,2,3()   

  1. 1. School of Material Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
    4. Polymer Research Institute, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2020-10-07 Revised:2021-03-18 Published:2021-07-15 Online:2021-07-22
  • Contact: WANG Rui

摘要:

为探究零维碳纳米材料碳点(CDs)对阻燃聚对苯二甲酸乙二醇酯(FRPET)热力学性能、阻燃性能、力学性能及荧光性能的影响,将对PET具有良好阻燃效果的共聚型阻燃剂2-羧乙基苯基次膦酸(CEPPA)与碳点同时采用原位聚合的方式添加到PET基体中,研究碳点添加量对FRPET各项性能的影响规律。通过极限氧指数(LOI值)、垂直燃烧(UL94)、锥形量热(CONE)等测试分析不同碳点添加量对FRPET的性能影响。结果表明:在碳点添加量为1.50%时,FRPET的LOI值最高可达34%,垂直燃烧级别为V-0级,较只添加CEPPA的FRPET引燃时间变长、热释放速率峰值与平均热释放速率及总热释放量均降低;加入CDs后FRPET的力学性能也有很大改善,且赋予了荧光性能,有益于拓宽FRPET的应用领域。

关键词: 碳点, 荧光, 碳纳米材料, 聚酯, 阻燃纤维, 功能性纤维

Abstract:

In order to explore the effects of zero-dimensional carbon nanomaterials-carbon dots (CDs) on the thermodynamic, flame-retardant, mechanical and fluorescent properties, a copolymer flame retardant with a good flame-retardant effect on poly(ethylene terephthalate) (PET) was selected. 2-carboxyethyl phenyl hypophosphorous acid (CEPPA) and carbon dots were added to the PET matrix by in-situ polymerization, and the effect of carbon dot addition on various properties of FRPET was studied. The effect of different carbon dots on the performance of FRPET was analyzed through limiting oxygen index (LOI), vertical combustion (UL94), cone calorimetry (CONE) and other tests. The results of the study show that the LOI value of FRPET reaches up to 34%, when the carbon dots addition is 1.50% and the vertical combustion is at the V-0 level. Compared to FRPET with only CEPPA addition, the ignition time is extended and the peak heat release rate reduced, the average heat release rate and the total heat release decreased. In addition, the mechanical properties of FRPET after the addition of CDs are also greatly improved and give FRPET fluorescent properties, which is beneficial for broadening the application fields of FRPET.

Key words: carbon dots, fluorescence, carbon nanomaterials, polyester, flame retardant fiber, functional fiber

中图分类号: 

  • TQ324.8

表1

阻燃共聚物的配方"

样品名称 CEPPA中磷的
质量分数
碳点(CDs)的
质量分数
PET
FRPET 1
FRPET-0.25CDs 1 0.25
FRPET-0.50CDs 1 0.50
FRPET-0.75CDs 1 0.75
FRPET-1.00CDs 1 1.00
FRPET-1.50CDs 1 1.50
FRPET-2.00CDs 1 2.00

图1

明胶基碳点的荧光性能、形貌及粒径分布"

图2

明胶基碳点的红外光谱图"

图3

PET、FRPET、FRPET-CDs制备示意图"

图4

不同碳点添加量的FRPET的TG和DTG曲线"

表2

碳点/CEPPA/PET共聚物的热重测试结果"

样品名称 T5%/℃ 最大质量损失
速率/(%·min-1)
Tmax/℃ 700 ℃时
残炭量/%
PET 389.63 20.55 432.57 7.49
FRPET 380.59 19.27 435.43 9.09
FRPET-0.25CDs 382.93 19.18 436.74 8.00
FRPET-0.50CDs 381.76 20.11 431.60 9.68
FRPET-0.75CDs 383.63 20.01 433.48 10.15
FRPET-1.00CDs 382.88 21.26 431.71 11.02
FRPET-1.50CDs 383.95 19.77 430.78 11.93
FRPET-2.00CDs 378.72 18.29 430.57 12.08

图5

不同碳点添加量的FRPET的DSC曲线"

表3

阻燃共聚物的DSC数据"

样品名称 Tg/℃ Tc/℃ Tm/℃
PET 64 209 245
FRPET 69 153 219
FRPET-0.25CDs 63 164 230
FRPET-0.50CDs 67 163 229
FRPET-0.75CDs 60 158 228
FRPET-1.00CDs 70 154 229
FRPET-1.50CDs 62 151 228
FRPET-2.00CDs 67 150 227

表4

碳点/CEPPA/PET共聚物的LOI值和UL94测试结果"

样品名称 LOI值/% UL94测试
t1/s t2/s 级别
PET 21 31.6 11.941 -
FRPET 31 1.01 1.16 V-0
FRPET-0.25CDs 28 0.65 0.72 V-0
FRPET-0.50CDs 31 1.22 0.63 V-0
FRPET-0.75CDs 33 0.89 0.9 V-0
FRPET-1.00CDs 34 0.89 0.76 V-0
FRPET-1.50CDs 34 0.65 0.72 V-0
FRPET-2.00CDs 26 0.92 1.08 V-0

图6

不同碳点添加量FRPET的锥形量热曲线"

表5

碳点/CEPPA/PET共聚物的锥形量热测试结果"

样品名称 引燃时间/s 热释放速率峰值/(kW·m-2) 平均热释放速率/(kW·m-2) 总热释放量/(MJ·m-2)
PET 51 915.85 241.2 65.22
FRPET 55 717.47 145.5 52.66
FRPET-0.25CDs 54 627.97 125.6 46.35
FRPET-0.50CDs 53 581.53 139.4 50.89
FRPET-0.75CDs 52 631.91 139.5 51.22
FRPET-1.00CDs 59 623.32 147.9 52.78
FRPET-1.50CDs 58 626.89 126.1 47.06
FRPET-2.00CDs 62 732.25 139.2 51.29

图7

锥形量热测试后复合材料残炭的SEM照片"

图8

PET和PET阻燃共聚物残炭的红外光谱图"

表6

碳点/CEPPA/PET共聚物力学性能测试结果"

样品名称 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
PET 46.37 785.52 6.80
FRPET 55.82 1 119.99 7.60
FRPET-0.25CDs 56.21 1 122.21 7.20
FRPET-0.50CDs 58.88 1 191.78 7.60
FRPET-0.75CDs 59.77 1 308.45 8.40
FRPET-1.00CDs 51.49 1 372.96 5.40
FRPET-1.50CDs 51.18 1 203.80 7.61
FRPET-2.00CDs 49.73 1 063.78 5.20

图9

碳点/CEPPA/PET共聚物在光激发下的发射波谱"

[1] 梁科文, 王锐, 朱志国, 等. 三聚氰胺氰尿酸盐对阻燃PET的影响[J]. 纺织学报, 2012, 33(11):20-26.
LIANG Kewen, WANG Rui, ZHU Zhiguo, et al. Influence of melamine cyanurate on flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2012, 33(11):20-26.
[2] 张国强, 王锐, 朱志国, 等. 新型抗静电聚酯纤维的制备及其结构性能[J]. 纺织学报, 2013, 34(1):7-11.
ZHANG Guoqiang, WANG Rui, ZHU Zhiguo, et al. Preparation, structure and properties of new antistatic polyester fiber[J]. Journal of Textile Research 2013, 34(1):7-11.
[3] FANG Y, LIU X, TAO X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168.
doi: 10.1016/j.porgcoat.2019.05.010
[4] ZHAO H B, WANG Y Z. Design and synjournal of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23):1700451.
doi: 10.1002/marc.v38.23
[5] 王访鹤, 王锐, 魏丽菲, 等. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11):106-112.
WANG Fanghe, WANG Rui, WEI Lifei, et al. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics[J]. Journal of Textile Research, 2019, 40(11):106-112.
[6] ŁUKAWSKI D, GRZESKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12):7271-7281.
doi: 10.1007/s10570-020-03270-y
[7] LEE S, KIM H M, SEONG D G, et al. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites[J]. Carbon, 2019, 143:650-659.
doi: 10.1016/j.carbon.2018.11.050
[8] SHABESTARI M E, KALALI E N, GONZÁLEZ V J, et al. Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites[J]. Carbon, 2017, 121:193-200.
doi: 10.1016/j.carbon.2017.05.087
[9] CHAVALI K S, PETHSANGAVE D A, PATANKAR K C, et al. Graphene-based intumescent flame retardant on cotton fabric[J]. Journal of Materials Science, 2020, 55(29):14197-14210.
doi: 10.1007/s10853-020-04989-6
[10] ZABIHI O, AHMADI M, LI Q, et al. A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid[J]. Journal of Cleaner Production, 2020, 247:119150.
doi: 10.1016/j.jclepro.2019.119150
[11] ZHOU K, GAO R. The influence of a novel two dimensional graphene-like nanomaterial on thermal stability and flammability of polystyrene[J]. Journal of Colloid and Interface Science, 2017, 500:164-171.
doi: 10.1016/j.jcis.2017.04.018
[12] YU R, LIU J, GAO D, et al. Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate[J]. Composites Communications, 2020, 20:100359.
doi: 10.1016/j.coco.2020.100359
[13] CHEN Q, WEN X, CHEN H, et al. Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate)[J]. Polymers for Advanced Technologies, 2015, 26(2):128-135.
doi: 10.1002/pat.3431
[14] 魏丽菲, 王锐. 碳基纳米材料在聚合物阻燃中的研究进展[J]. 高分子材料科学与工程, 2019, 35(9):169-176.
WEI Lifei, WANG Rui. Progress in carbon-based nanomaterials in flame retardant polymers[J]. Polymer Materials Science and Engineering, 2019, 35(9):169-176.
[15] GAO D, ZHAO H, CHEN X, et al. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms[J]. Materials Today Chemistry, 2018, 9:103-113.
doi: 10.1016/j.mtchem.2018.06.004
[16] GUO Y, YANG L, LI W, et al. Carbon dots doped with nitrogen and sulfur and loaded with copper(Ⅱ) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine[J]. Microchimica Acta, 2016, 183(4):1409-1416.
doi: 10.1007/s00604-016-1779-6
[17] SONG Y, ZHU S, SHAO J, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(4):610-615.
doi: 10.1002/pola.28416
[18] LIN L, ZHANG S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chemical Communications, 2012, 48(82):10177-10179.
doi: 10.1039/c2cc35559k
[19] DONG Y, CHEN C, ZHENG X, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18):8764-8766.
doi: 10.1039/c2jm30658a
[20] HE X, LI H, LIU Y, et al. Water soluble carbon nanoparticles: hydrothermal synjournal and excellent photoluminescence properties[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(2):326-332.
doi: 10.1016/j.colsurfb.2011.05.036
[21] LI H, HE X, KANG Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26):4430-4434.
doi: 10.1002/anie.200906154
[22] MITRA S, CHANDRA S, PATHAN S H, et al. Room temperature and solvothermal green synjournal of self passivated carbon quantum dots[J]. RSC Advances, 2013, 3(10):3189.
doi: 10.1039/c2ra23085b
[23] PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21(23):5563-5565.
doi: 10.1021/cm901593y
[24] CHUN L, LIU W, SUN X, et al. Excitation dependent emission combined with different quenching manners supports carbon dots to achieve multi-mode sensing[J]. Sensors and Actuators B: Chemical, 2018, 263:1-9.
doi: 10.1016/j.snb.2018.02.050
[25] ATCHUDAN R, EDISON T, ASEER K R, et al. Hydrothermal conversion of magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169:321-328.
doi: 10.1016/j.colsurfb.2018.05.032
[26] WANG B, MU Y, YIN H, et al. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots[J]. Nanoscale, 2018, 10(22):10650-10656.
doi: 10.1039/C8NR02043D
[27] YE R, XIANG C, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4:2943.
doi: 10.1038/ncomms3943
[28] XIAO D, YUAN D, HE H, et al. Microwave-assisted one-step green synjournal of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013, 28(4):612-615.
doi: 10.1002/bio.v28.4
[29] YANG Z, XU M, LIU Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate[J]. Nanoscale, 2014, 6(3):1890-1895.
doi: 10.1039/C3NR05380F
[30] WU X, LI Y, YANG S, et al. Discriminative detection of mercury (Ⅱ) and hydrazine using a dual-function fluorescent probe[J]. Luminescence, 2020, 35(5):754-762.
doi: 10.1002/bio.v35.5
[31] TANG M, REN G, CHAI F. A facile synjournal of magnetic fluorescence Fe3O4-carbon dots for the detection and removal of Hg2+[J]. New Journal of Chemistry, 2020, 44(16):6635-6642.
doi: 10.1039/D0NJ00275E
[32] ZHAO Y, CHEN D, YANG J, et al. Visual and fast detection of trace copper ions using biosensor based on fret[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 217:101-106.
doi: 10.1016/j.saa.2019.03.082
[33] SUN Y, ZENG X, XIAO Y, et al. Novel dual-function near-infrared Ⅱ fluorescence and PET probe for tumor delineation and image-guided surgery[J]. Chemical Science, 2018, 9(8):2092-2097.
doi: 10.1039/C7SC04774F
[34] ZHENG Z, GENG W C, GAO J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene[J]. Chemical Science, 2018, 9(8):2087-2091.
doi: 10.1039/C7SC04989G
[35] FENG T, AI X, AN G, et al. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency[J]. ACS Nano, 2016, 10(5):5587-5587.
doi: 10.1021/acsnano.6b02794
[36] FANG S, XIA Y, LV K, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4[J]. Applied Catalysis B: Environmental, 2016, 185:225-232.
doi: 10.1016/j.apcatb.2015.12.025
[37] SUZUKI K, MALFATTI L, CARBONI D, et al. Energy transfer induced by carbon quantum dots in porous zinc oxide nanocomposite films[J]. The Journal of Physical Chemistry C, 2015, 119(5):2837-2843.
doi: 10.1021/jp510661d
[38] LI Y, ZHANG W, JIANG X, et al. Investigation of photo-induced electron transfer between amino-functionalized graphene quantum dots and selenium nanoparticle and it's application for sensitive fluorescent detection of copper ions[J]. Talanta, 2019, 197:341-347.
doi: 10.1016/j.talanta.2019.01.036
[39] MA C, ZHU Z, WANG H, et al. A general solid-state synjournal of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications[J]. Nanoscale, 2015, 7(22):10162-10169.
doi: 10.1039/C5NR01757B
[40] KONG B, ZHU A, DING C, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012, 24(43):5844-5848.
doi: 10.1002/adma.201202599
[41] 高建伟, 王锐, 董振峰, 等. 磷氟协同阻燃PET的制备及性能研究[J]. 北京服装学院学报(自然科学版), 2019, 39(2):1-9.
GAO Jianwei, WANG Rui, DONG Zhenfeng, et al. Preparation and properties of PET with synergistic flame retardant containing phosphorus and fluoride[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2019, 39(2):1-9.
[42] 陈咏, 王颖, 何峰, 等, 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10):13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10):13-19.
[43] TANG S, WACHTENDORF V, KLACK P, et al. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset[J]. RSC Advances, 2017, 7(2):720-728.
doi: 10.1039/C6RA25070J
[1] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[2] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[3] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[4] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[5] 关震宇, 周文乐, 张玉梅, 王华平. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(03): 64-70.
[6] 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128.
[7] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[8] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[9] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[10] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[11] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[12] 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26.
[13] 成世杰, 王晨洋, 张宏伟, 左丹英. 硼氮掺杂碳点对棉织物防紫外线性能的影响[J]. 纺织学报, 2020, 41(06): 93-98.
[14] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[15] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(03): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[4] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[5] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[6] 黄小华;沈鼎权. 菠萝叶纤维脱胶工艺及染色性能[J]. 纺织学报, 2006, 27(1): 75 -77 .
[7] 王菊萍;殷佳敏;彭兆清;张峰. 活性染料染色织物超声波酶洗工艺[J]. 纺织学报, 2006, 27(1): 93 -95 .
[8] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[9] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[10] 殷秀莲;程显毅. 计算机辅助配色系统相关技术的研究进展[J]. 纺织学报, 2006, 27(3): 106 -110 .