纺织学报 ›› 2021, Vol. 42 ›› Issue (07): 69-75.doi: 10.13475/j.fzxb.20210202207
TAN Yanjun1,2(), HUO Qian1,2, LIU Shurui2
摘要:
针对聚对苯撑苯并二噁唑(PBO)纤维经紫外光照射后强力下降的问题,首先采用氧等离子体对PBO纤维表面进行改性,提高其界面性能;然后在改性PBO纤维表面涂覆纳米TiO2及有机硅整理剂制备TiO2/PBO复合纤维;最后对复合纤维的结构和性能进行表征与分析。结果表明:当氧等离子体处理功率为200 W、处理时间为200 s时,PBO纤维表面有凹痕,纤维拉伸强力保持率大于90%,摩擦因数增大16%,接触角减小为52.7°,说明PBO纤维的表面润湿性能增大;当纳米TiO2与硅烷偶联剂质量比为1∶1时,TiO2/PBO复合纤维表面有沉积凸起的纳米TiO2颗粒;用紫外光照射200 h后,TiO2/PBO复合纤维的断裂强力下降率比PBO原纤减少30%,说明纳米TiO2涂覆后的PBO纤维抗紫外光照射性能提高。
中图分类号:
[1] | 马春杰, 宁荣昌. PBO 纤维的研究及进展[J]. 高科技纤维与应用, 2004, 29(3):46-51. |
MA Chunjie, NING Rongchang. Development and prospect of PBO fiber[J]. Hi-Tech Fiber & Application, 2004, 29(3):46-51. | |
[2] |
KITAGAWALL T, YABUKI K, YOUNG R J. An investigation into the relationship between processing, structure and properties for high-modulus PBO fibres:part Ⅰ:raman band shifts and broadening in tension and compression[J]. Polymer, 2001, 42(5):2101-2112.
doi: 10.1016/S0032-3861(00)00571-1 |
[3] | 陈凤贵, 张明忠, 陈林飞, 等. 聚多巴胺修饰聚对苯撑苯并双口恶唑纤维增强其抗老化性与功能性[J]. 高分子材料科学与工程, 2020, 36(5):153-159. |
CHEN Fenggui, ZHANG Mingzhong, CHEN Linfei, et al. Anti-ultraviolet aging property and functionality enhancement of poly(p-phenylene benzobisoxazole) fober coated with polydopamine[J]. Polymer Materials Science & Engineering, 2020, 36(5):153-159. | |
[4] |
FATEAM U K, GOTOH Y. Highly adhesive metal plating on Zylon® fiber via iodine pretreatment[J]. Appl Surf Sci, 2011, 258:883.
doi: 10.1016/j.apsusc.2011.09.020 |
[5] | 李旭, 王鸣义, 钱军, 等. 高性能PBO纤维的开发和应用[J]. 合成纤维, 20l0, 39(6):1-5. |
LI Xu, WANG Mingyi, QIAN Jun, et al. The development and application of high performance PBO fiber[J]. Synthetic Fiber in China, 20l0 39(6):1-5. | |
[6] | 刘义鹤, 江洪. 高性能纤维产业发展现状[J]. 新材料产业, 2016(3):5-9. |
LIU Yihe, JIANG Hong. Development status of high performance fiber industry[J]. Advanced Materials Industry, 2016(3):5-9. | |
[7] |
ZHANG C, XU H, JIANG Z, et al. Carbon nanotubes grafting PBO fiber: a study on the interfacial properties of epoxy composites[J]. Polymer Composites, 2012, 33:927-32.
doi: 10.1002/pc.v33.6 |
[8] | 陈明新. PBO纤维表面等离子体改性及PBO/BMI复合材料界面粘结性能的研究[D]. 大连:大连理工大学, 2012: 7-9. |
CHEN Mingxin. Study on surface modification of PBO fibers with plasma treatment and interfacial adhesion of PBO/BMI composite[D]. Dalian:Dalian University of Technology, 2012:7-9. | |
[9] |
MENDILI Y E, BARDEAU J F, RANDRIANANTOANDRO N, et al. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation[J]. The Journal of Physical Chemistry C, 2012, 116:23785-23792.
doi: 10.1021/jp308418x |
[10] | 屈慕超, 张春华, 梁希凤, 等. PBO纤维和碳纤维混杂增强混凝土抗弯曲性能研究[J]. 高科技纤维与应用, 2009, 34(2):18-21. |
QU Muchao, ZHANG Chunhua, LIANG Xifeng, et al. Study on the flexure properties of PBO/CF hybrid reinforced concrete[J]. Hi-Tech Fiber & Application, 2009, 34(2):18-21. | |
[11] | 王斌, 金志浩, 丘哲明, 等. 偶联剂对PBO纤维/树脂界面粘接性能的影响[J]. 西安交通大学学报, 2002, 36(9):975-978. |
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of coupling agent oninterfacial adhesion of poly(p-phenylene benzobisoxazole) fibre/epoxy matrix composites[J]. Journal of Xi'an Jiaotong University, 2002, 36(9):975-978. | |
[12] |
TAO Z, DAYONG H, JUNHONG J, et al. Improvement of surface wettability andinterfacia adhesion ability of poly(p-phenylene benzobisoxazole) (PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J]. European Polymer Journal, 2009, 45:302-307.
doi: 10.1016/j.eurpolymj.2008.10.041 |
[13] |
SHAHBAZMOHAMADI S, JORDAN E H. Optimizing an SEM-based 3D surface imaging technique for recording bond coat surface geometry in thermal barrier coatings[J]. Measurement Science and Technology, 2012, 23:125601.
doi: 10.1088/0957-0233/23/12/125601 |
[14] |
LI Y, XIE H, TANG M, et al. The study on microscopic mechanical property of polycrystalline with SEM moiré method[J]. Optics and Lasers in Engineering, 2012, 50(17) :57-64.
doi: 10.1016/j.optlaseng.2011.07.016 |
[15] | KLAVER J, DESBOIS G, URAI J L, et al. BIB-SEM study of the pore spacemorphology in early mature posidonia shale from the hils area[J]. Germany International Journal of Coal Geology, 2012, 103:12-25. |
[16] | 张承双. 氧气等离子体改性PBO纤维的表面及PBO/PPESK复合材料界面的影响[D]. 大连:大连理工大学, 2009:14-17. |
ZHANG Chengshuang. Effects of oxygen plasma modification on surface properties of PBO[D]. Dalian: Dalian University of Technology, 2009:14-17 | |
[17] |
LIU Z, CHEN P, HAN D, et al. Atmospheric air plasma treated PBO fibers wettability adhesion and aging behaviors[J]. Vacuum, 2013, 92:13-19.
doi: 10.1016/j.vacuum.2012.11.002 |
[18] |
PARK J M, KIM D S, KIM S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J]. Journal of Colloid and Interface Science, 2003, 264:431-445.
doi: 10.1016/S0021-9797(03)00419-3 |
[19] | 王斌, 金志浩, 邱哲明, 等. 电晕处理对高性能PBO纤维的表面性能及其界面粘接性能的影响[J]. 复合材料学报, 2003, 20(4):101-106. |
WANG Bin, JIN Zhihao, QIU Zheming, et al. Effect of corona treatment on the surface and interfacial adhesion properties of high performance poly(p-phenylene benzobisoxazole)(PBO)fiber[J]. Acta Materiae Compositae Sinica, 2003, 20(4):101-106. | |
[20] | 王华, 谭艳君. 低温等离子体预处理对PBO纤维性能影响的研究[J]. 染整技术, 2016(6) :18-20. |
WANG Hua, TAN Yanjun. Study on the effect of low temperature plasma pretreatment on the properties of PBO fibers[J]. Textile Dyeing and Finishing Journal 2016(6):18-20. | |
[21] | KITAGAWA T, HIROKIASE, KAZUYUKIY, et al. Morphological study on poly-p-phenylene benzobis-oxalzole(PBO) fiber[J]. Polymer Science Part B: Polymer Physics, 1998, 36(1):8662-8672. |
[22] |
SAITO Y, TAHARA A, IMAIZUMI M, et al. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography[J]. Analytical Chemistry, 2003, 75:5525-5531.
doi: 10.1021/ac030052h |
[1] | 伏立松, 张淑洁, 王瑞, 杨兆薇, 荆梦轲. 管道修复用涤纶/苎麻非织造复合材料拉伸强度[J]. 纺织学报, 2020, 41(02): 52-57. |
[2] | 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41. |
[3] | 宋星, 祝成炎, 蔡冯杰, 吕智宁, 田伟. 碱处理对涤纶/光敏树脂复合材料力学性能的影响[J]. 纺织学报, 2019, 40(07): 97-102. |
[4] | 刘冰倩, 盛丹, 潘恒, 曹根阳. N,N-二甲基乙酰胺/氯化钙体系对热致液晶聚芳酯纤维结构及性能的影响[J]. 纺织学报, 2019, 40(04): 15-20. |
[5] | 张梅 贾紫璇 孙小娟 李宏伟. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018, 39(01): 1-5. |
[6] | 吴松 吕晓龙 武春瑞 高启君 张昊 李振东 孔晓. 拉伸残余应力对聚偏氟乙烯纤维力学性能的影响[J]. 纺织学报, 2017, 38(07): 28-33. |
[7] | 汪洋 吕晓龙 武春瑞 高启君 张如意. 高强度聚偏氟乙烯纤维的熔融纺丝法制备[J]. 纺织学报, 2015, 36(06): 1-6. |
[8] | 曹俊 申兴丛 裘鹏飞 戚栋明. 溶胶-凝胶法制备的钛溶胶形态及其光催化性能[J]. 纺织学报, 2014, 35(5): 7-0. |
[9] | 单鸿波 徐方 孙志宏 于海燕. 管状复合材料拉伸性能测试及夹具原型系统[J]. 纺织学报, 2013, 34(9): 134-0. |
[10] | 贾长兰. 纳米TiO2改性丝素膜中的纳米颗粒粒径分析[J]. 纺织学报, 2013, 34(11): 24-0. |
[11] | 尤丽霞;张羡;李丹;李海祥;周文龙. 超声波处理对棉织物污渍去除的影响[J]. 纺织学报, 2011, 32(4): 91-94. |
[12] | 钱坤;曹海建;盛东晓;庄粟裕. 低温等离子体处理对芳纶界面性能的影响[J]. 纺织学报, 2010, 31(10): 10-13. |
[13] | 沈巨磊;于永玲;吕丽华. 基于废弃混纺纤维循环利用的板材成型技术及其性能[J]. 纺织学报, 2010, 31(1): 28-31. |
[14] | 楼利琴;傅雅琴. 表面处理对亚麻织物/PVC复合材料界面性能的影响[J]. 纺织学报, 2009, 30(9): 55-58. |
[15] | 姜生. 等离子体处理后UHMWPE纤维与LDPE复合材料的性能[J]. 纺织学报, 2007, 28(9): 57-60. |
|