纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 175-184.doi: 10.13475/j.fzxb.20200606110

• 综合述评 • 上一篇    下一篇

高分子聚合物硬骨缺损修复材料研究进展

孙钰晟1, 左保齐1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215123
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2020-06-22 修回日期:2021-05-08 出版日期:2021-08-15 发布日期:2021-08-24
  • 通讯作者: 左保齐
  • 作者简介:孙钰晟(1997—),男,硕士生。主要研究方向为丝蛋白生物材料。

Research progress of high-molecular polymer material for bone defect repair

SUN Yusheng1, ZUO Baoqi1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2020-06-22 Revised:2021-05-08 Published:2021-08-15 Online:2021-08-24
  • Contact: ZUO Baoqi

摘要:

为开发生物相容性好、力学性能优异、安全有效和性能稳定的硬骨缺损修复材料,对构成硬骨缺损修复材料的种类、性能优缺点以及未来研究趋势进行综述。首先分析了以丝素蛋白、壳聚糖、胶原、聚乙烯醇、聚己内脂等高分子聚合物为原料制备硬骨缺损修复材料的最新研究进展;其次针对其在硬骨缺损修复骨髓炎治疗中的应用及其在研究中存在的不足进行分析。硬骨缺损修复材料涉及多学科交叉,以天然高分子聚合物以及合成高分子聚合物为原料制成的骨缺损修复材料可极大地促进其在骨组织工程中的应用,同时以石墨烯、氧化石墨烯、二氧化钛、羟基磷灰石等为代表的无机类材料在今后有望成为骨缺损修复材料的研究热点。

关键词: 骨组织工程, 硬骨缺损修复材料, 丝素蛋白, 天然高分子聚合物, 合成高分子聚合物, 骨髓炎

Abstract:

In order to develop bone defect-repairing materials with good biocompatibility, excellent mechanical properties and property stability, the types, properties, advantages and disadvantages as well as future research trends of bone defect-repairing materials were reviewed. This paper firstly summarizes the recent research progress in preparation of bone defect-repairing materials by polymers such as silk fibroin, chitosan, collagen, polyvinyl alcohol, polycaprolactone, and polylactic acid and its derivatives. In view of applications in the treatment of osteomyelitis in repairing bone defects, shortcomings of the materials and the research gaps were analyzed. It is concluded that the development of bone defect-repairing materials are multidisciplinary, and the repair materials made from natural and synthetic high-molecular polymers can greatly promote their applications in bone tissue engineering. It is also pointed out that inorganic materials such as graphene, graphene oxide, titanium dioxide, hydroxyapatite are expected to become the research focuses of bone defect-repairing materials in the future.

Key words: bone tissue engineering, bone defect-repairing material, silk fibroin, natural high-molecular polymer, synthetic high-molecular polymer, osteomyelitis

中图分类号: 

  • R318.08

表1

常用的硬骨缺损修复支架"

复合支架 目的 文献
负载万古霉素明胶基复合支架 通过万古霉素杀灭致病菌达到治疗骨髓炎目的 [8]
壳聚糖/透明质酸、纳米珍珠粉复合支架 在组成以及结构上模拟骨组织达到治疗硬骨缺损目的 [9]
竹纤维/羟基磷灰石/聚乳酸乙醇酸复合支架 提高支架孔隙率以及成骨效应 [10]

表2

丝素蛋白溶解方式"

溶解方式 特点
氯化钙/乙醇/水 对丝素蛋白没有严重降解作用,无毒且高效
溴化锂 溴化锂溶解的丝素蛋白比通过氯化钙/乙醇/水三元溶解体系溶解的丝素蛋白具有更高的分子质量[17]
甲酸/氯化钙 可直接将丝素分解成微纳米纤维,且丝素蛋白纳米纤维的形貌与氯化钙浓度密切相关,材料在干燥以及潮湿状态下具有良好的力学性能[16]

表3

高分子聚合物硬骨缺损修复再生材料"

硬骨缺损修复
再生材料
种类 文献
天然高分子聚合物 胶原蛋白、壳聚糖、透明质酸 [27-30]
合成高分子聚合物 聚乙烯醇、聚己内脂、聚乳酸及其衍生物 [31-33]
[1] 明津法. SF/SA/HAp复合水凝胶研究及其生物相容性[D]. 苏州:苏州大学, 2014: 1.
MING Jinfa. SF/SA/HAP hydroxyapatite fibrous hydrogels and its biocompatibility[D]. Suzhou: Soochow University, 2014: 1.
[2] COBB L H, MCCABE E M, PRIDDY L B. Therapeutics and delivery vehicles for local treatment of osteomye-litis[J]. Journal of Orthopaedic Research, 2020, 38(10):2091-2103.
doi: 10.1002/jor.v38.10
[3] BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 110:110698.
[4] BOSE S, ROY M, BANDYOPADHYAY A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10):546-554.
doi: 10.1016/j.tibtech.2012.07.005
[5] PENG Zhili, ZHAO Tianshu, ZHOU Yiqun, et al. Bone tissue engineering via carbon-based nanomaterials[J]. Advanced Healthcare Materials, 2020, 9(5):1901495.
doi: 10.1002/adhm.201901495 pmid: 31976623
[6] HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21(24):2529-2543.
doi: 10.1016/S0142-9612(00)00121-6
[7] NAZAROV R, JIN H J, KAPLAN D L. Porous 3-D scaffolds from regenerated silk fibroin[J]. Biomacromolecules, 2004, 5(3):718-726.
doi: 10.1021/bm034327e
[8] KRISHNAN A G, BISWAS R, MENON D, et al. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis[J]. Biomaterials Science, 2020, 8(9):2653-2665.
doi: 10.1039/D0BM00140F
[9] LI Xiaoni, XU Pu, CHENG Yanan, et al. Nano-pearl powder/chitosan-hyaluronic acid porous composite scaffold and preliminary study of its osteogenesis mechanism[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 111(6):110749.
[10] JIANG L Y, LI Y, XIONG C D, et al. Preparation and properties of bamboo fiber/nano-hydroxyapatite/poly(lactic-co-glycolic) composite scaffold for bone tissue engineering[J]. ACS Applied Materials & Interfaces, 2017, 9(5):4890-4897.
[11] BHARADWAZ A, JAYASURIYA A C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Materials Science & Engineering C: Materials for Biological Applications, 2020, 110:110698.
[12] KOH Leng-Duei, CHENG Yuan, TENG Choon-Peng, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46:86-110.
doi: 10.1016/j.progpolymsci.2015.02.001
[13] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013
[14] KIM U J, PARK J Y, LI C M, et al. Structure and properties of silk hydrogels[J]. Biomacromolecules, 2004, 5(3):786-792.
doi: 10.1021/bm0345460
[15] GOKILA S, GOMATHI T, VIJAYALAKSHMI K, et al. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2018, 120:876-885.
doi: 10.1016/j.ijbiomac.2018.08.149
[16] ZHANG Feng, YOU Xinran, DOU Hao, et al. Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3352-3361.
[17] CHO H J, KI C S, OH H, et al. Molecular weight distribution and solution properties of silk fibroins with different dissolution conditions[J]. International Journal of Biological Macromolecules, 2012, 51(3):336-341.
doi: 10.1016/j.ijbiomac.2012.06.007
[18] PHAN Nguyen Thang, VINH Nguyen Quang, VAN-HUY Nguyen, et al. Silk fibroin-based biomaterials for biomedical applications: a review[J]. Polymers, 2019, 11(12):1933.
doi: 10.3390/polym11121933
[19] JOHARI Narges, HOSSEINI Hamid Reza Madaah,SAMADIKUCHAKSARAEI Ali. Mechanical modeling of silk fibroin/TiO2 and silk fibroin/fluoridated TiO2 nanocomposite scaffolds for bone tissue engineering[J]. Iranian Polymer Journal, 2020, 29(3):219-224.
doi: 10.1007/s13726-020-00789-6
[20] LIU F, LIU C, ZHENG B W, et al. Synergistic effects on incorporation of beta-tricalcium phosphate and graphene oxide nanoparticles to silk fibroin/soy protein isolate scaffolds for bone tissue engineering[J]. Polymers, 2020, 12(1):69.
doi: 10.3390/polym12010069
[21] NARIMANI M, TEIMOURI A, SHAHBAZARAB Z. Synjournal, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application[J]. Polymer Bulletin, 2019, 76(2):725-745.
doi: 10.1007/s00289-018-2390-2
[22] SUN J C, SHAKYA S, GONG M, et al. Combined application of graphene-family materials and silk fibroin in biomedicine[J]. Chemistryselect, 2019, 4(19):5745-5754.
doi: 10.1002/slct.v4.19
[23] SALEEM M, RASHEED S, CHEN Y G. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration[J]. Science and Technology of Advanced Materials, 2020, 21(1):242-266.
doi: 10.1080/14686996.2020.1748520
[24] VALARMATHI N, SUMATHI S. Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications[J]. New Journal of Chemistry, 2020, 44(11):4647-4663.
doi: 10.1039/C9NJ05592D
[25] LI P F, JIA Z R, WANG Q, et al. A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties[J]. Journal of Materials Chemistry B, 2018, 6(45):7427-7438.
doi: 10.1039/C8TB01672K
[26] YE P, YU B, DENG J, et al. Application of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defect[J]. Experimental and Therapeutic Medicine, 2017, 14(6):5547-5553.
[27] MARTINO A D, SITTINGER M, RISBUB M V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering[J]. Biomaterials, 2005, 26(30):5983-5990.
doi: 10.1016/j.biomaterials.2005.03.016
[28] DONG C J, LV Y G. Application of collagen scaffold in tissue engineering: recent advances and new perspectives[J]. Polymers, 2016, 8(2):42.
doi: 10.3390/polym8020042
[29] KOGAN Grigorij, LTES Ladislav, STERN Robert, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications[J]. Biotechnology Letters, 2007, 29(1):17-25.
pmid: 17091377
[30] PARENTEAU-BAREIL Remi, GAUVIN Robert, BERTHOD Francois. Collagen-based biomaterials for tissue engineering applications[J]. Materials, 2010, 3(3):1863-1887.
doi: 10.3390/ma3031863
[31] POURJAVADI Ali, TEHRANI Zahra Mazaheri, SALAMI Hamid, et al. Both tough and soft double network hydrogel nanocomposite based on O-arboxymethyl chitosan/poly(vinyl alcohol) and graphene oxide: a promising alternative for tissue engineering[J]. Polymer Engineering & Science, 2020, 60(5):889-899.
[32] ZHOU Huan, LAWRENCE Joseph G, BHADURI Sarit B. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review[J]. Acta Biomaterialia, 2012, 8(6):1999-2016.
doi: 10.1016/j.actbio.2012.01.031 pmid: 22342596
[33] 方艳, 徐水, 吴婷芳, 等. 丝胶蛋白/羟基磷灰石/聚己内酯复合支架材料的制备及表征[J]. 材料导报, 2019, 33(S2):533-537.
FANG Yan, XU Shui, WU Tingfang, et al. Preparation and characterization of sericin/hydroxyapatite/polycaprolactone composite scaffold materials[J]. Materials Reports, 2019, 33(S2):533-537.
[34] DONNALOJA Francesca, JACCHETTI Emanuela, SONCINI Monica, et al. Natural and synthetic polymers for bone scaffolds optimization[J]. Polymers, 2020, 12(4):905.
doi: 10.3390/polym12040905
[35] LEE C H, SINGLA A, LEE Y. Biomedical applications of collagen[J]. International Journal of Pharmaceutics, 2001, 221(1/2):1-22.
doi: 10.1016/S0378-5173(01)00691-3
[36] LU Ting, HU Hong, LI Yuanqi, et al. Bioactive scaffolds based on collagen filaments with tunable physico-chemical and biological features[J]. Soft Matter, 2020, 16(18):4540-4548.
doi: 10.1039/d0sm00233j pmid: 32356540
[37] FERREIRA A M, GENTILE P, CHIONO V, et al. Collagen for bone tissue regeneration[J]. Acta Biomaterialia, 2012, 8(9):3191-3200.
doi: 10.1016/j.actbio.2012.06.014
[38] LEE Y B, SONG S J, SHIN Y C, et al. Ternary nanofiber matrices composed of PCL/black phosphorus/collagen to enhance osteodifferentiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 80:802-810.
doi: 10.1016/j.jiec.2019.06.055
[39] NONG L M, ZHOU D, ZHENG D, et al. The effect of different cross-linking conditions of EDC/NHS on type II collagen scaffolds: an in vitro evaluation[J]. Cell and Tissue Banking, 2019, 20(4):557-568.
doi: 10.1007/s10561-019-09790-7
[40] LIU S K, ZHOU C C, MOU S, et al. Biocompatible graphene oxide-collagen composite aerogel for enhanced stiffness and in situ bone regeneration[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 105:110137.
[41] SUH J K F, MATTHEW H W T. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review[J]. Biomaterials, 2000, 21(24):2589-2598.
doi: 10.1016/S0142-9612(00)00126-5
[42] SEOL Y J, LEE J Y, PARK Y J, et al. Chitosan sponges as tissue engineering scaffolds for bone formation[J]. Biotechnology Letters, 2004, 26(13):1037-1041.
doi: 10.1023/B:BILE.0000032962.79531.fd
[43] EI-MELIEGY E, ABU-ELSAAD N I, EI-KADY A M, et al. Improvement of physico-chemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite[J]. Scientific Reports, 2018, 8:12180.
doi: 10.1038/s41598-018-30720-2 pmid: 30111828
[44] MAJI S, AGARWAL T, DAS J, et al. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications[J]. Carbohydrate Polymers, 2018, 189:115-125.
doi: 10.1016/j.carbpol.2018.01.104
[45] SHANMUGAM Balu Kolathupalayam, RANGARAJ Suriyaprabha, SUBRAMANI Karthik, et al. Biomimetic TiO2-chitosan/sodium alginate blended nanocomposite scaffolds for tissue engineering applications[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 110:110710.
[46] GARNICA-PALAFOX I M, ETRELLA-MONROY H O, VAZQUEZ-TORRES N A, et al. Influence of multi-walled carbon nanotubes on the physico-chemical and biological responses of chitosan-based hybrid hydrog-els[J]. Carbohydrate Polymers, 2020, 236:115971.
doi: 10.1016/j.carbpol.2020.115971
[47] COLLINS M N, BIRKINSHAW C. Hyaluronic acid based scaffolds for tissue engineering:a review[J]. Carbohydrate Polymers, 2013, 92(2):1262-1279.
doi: 10.1016/j.carbpol.2012.10.028
[48] GAO Feng, LI Jinrui, WANG Luyu, et al. Dual-enzymatically crosslinked hyaluronic acid hydrogel as a long-time 3D stem cell culture system[J]. Biomedical Materials, 2020, 15(4):045013.
doi: 10.1088/1748-605X/ab712e
[49] CHANG Kai-Chi, LIN Dan-Jae, WU Yu-Ren, et al. Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: in vitro evaluation of antibacterial activity and biocompatibility[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 105:110074.
[50] MAKVANDI P, ALI G W, SALA F D, et al. Hyaluronic acid/corn silk extract based injectable nanocomposite: a biomimetic antibacterial scaffold for bone tissue regeneration[J]. Materials Science & Engineering C:Materials for Biological Applications, 2020, 107:110195.
[51] PLACE E S, GEORGE J H, WILLIAMS C K, et al. Synthetic polymer scaffolds for tissue engineering[J]. Chemical Society Reviews, 2009, 38(4):1139-1151.
doi: 10.1039/b811392k
[52] CHEN G, CHEN N, WANG Q. Fabrication and properties of poly(vinyl alcohol)/beta-tricalcium phosphate composite scaffolds via fused deposition modeling for bone tissue engineering[J]. Composites Science and Technology, 2019, 172:17-28.
doi: 10.1016/j.compscitech.2019.01.004
[53] KAUR T, THIRUGNANAM A, PRAMANIK K. Effect of carboxylated graphene nanoplatelets on mechanical and in-vitro biological properties of polyvinyl alcohol nanocomposite scaffolds for bone tissue engineering[J]. Materials Today Communications, 2017, 12:34-42.
doi: 10.1016/j.mtcomm.2017.06.004
[54] XIA S H, TENG S H, WANG P. Synjournal of bioactive polyvinyl alcohol/silica hybrid fibers for bone regeneration[J]. Materials Letters, 2018, 213:181-184.
doi: 10.1016/j.matlet.2017.11.084
[55] FELICE B, SANCHEZ M A, SOCCI M C, et al. Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018, 93:724-738.
[56] LEE S J, LEE H J, KIM S Y, et al. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies[J]. Nanoscale, 2018, 10(33):15447-15453.
doi: 10.1039/C8NR04037K
[57] ZHAO W, LI J J, JIN K X, et al. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering[J]. Materials Science & Engineering C:Materials for Biological Applications, 2016, 59:1181-1194.
[58] LIU C, WONG H M, YEUNG K W K, et al. Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility[J]. Polymers, 2016, 8(8):287.
doi: 10.3390/polym8080287
[59] RASOULIANBOROUJENI M, FAHIMIPOUR F, SHAH P, et al. Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 96:105-113.
[60] LUO Yu, SHEN He, FANG Yongxiang, et al. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats[J]. ACS Applied Materials & Interfaces, 2015, 7(11):6331-6339.
[61] LEW D P, WALDVOGEL F A. Osteomyelitis[J]. Lancet, 2004, 364(9431):369-379.
doi: 10.1016/S0140-6736(04)16727-5
[62] WANG Q, CHEN C, LIU W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects[J]. Scientific Reports, 2017, 7:41808.
doi: 10.1038/srep41808
[63] LI H W, GU J S, SHAH L A, et al. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites[J]. Materials Science & Engineering C: Materials for Biological Applications, 2015, 49:210-216.
[64] AHADI F, KHORSHIDI S, KARKHANEH A. A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride[J]. European Polymer Journal, 2019, 118:265-274.
doi: 10.1016/j.eurpolymj.2019.06.001
[65] BESHELI N H, MOTTAGHITALAB F, ESLAMI M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model[J]. ACS Applied Materials & Interfaces, 2017, 9(6):5128-5138.
[66] WANG X Q, YUCEL T, LU Q, et al. Silk nanospheres and microspheres from silk/PVA blend films for drug delivery[J]. Biomaterials, 2010, 31(6):1025-1035.
doi: 10.1016/j.biomaterials.2009.11.002
[67] GONG H, WANG J, ZHANG J, et al. Control of octreotide release from silk fibroin microspheres[J]. Materials Science & Engineering C:Materials for Biological Applications, 2019, 102:820-828.
[68] CEVHER E, ORHAN Z, MULAZIMOGLU L, et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant staphylococcus aureus with prepared microspheres[J]. International Journal of Pharmaceutics, 2006, 317(2):127-135.
doi: 10.1016/j.ijpharm.2006.03.014
[69] AKSOY E A, YAGCI B S, MANAP G, et al. Vancomycin loaded gelatin microspheres containing wet spun poly(epsilon-caprolactone) fibers and films for osteomyelitis treatment[J]. Fibers and Polymers, 2019, 20(11):2236-2246.
doi: 10.1007/s12221-019-9271-7
[1] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[2] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
[3] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[4] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[5] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[6] 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71.
[7] 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19.
[8] 张治斌, 李刚, 毛森贤, 厉巽巽, 陈玉霜, 毛青山, 李翼, 潘志娟, 王晓沁. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
[9] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[10] 林永佳, 杨董超, 张佩华, 顾岩. 再生丝素蛋白/脱细胞真皮基质共混纳米纤维膜的制备及其性能[J]. 纺织学报, 2019, 40(07): 13-18.
[11] 王宗乾, 王邓峰, 周杭, 李俊. 超声波辅助对乳化交联工艺制备丝素蛋白微球形貌的影响[J]. 纺织学报, 2019, 40(02): 119-124.
[12] 周倩 袁久刚 李澜 王平 王强. 丝素蛋白的磷酸化及其仿生矿化膜的制备[J]. 纺织学报, 2018, 39(11): 8-13.
[13] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[14] 姚勇波 颜志勇 李喆 易洪雷 张玉梅 王华平. 牵伸倍率分配对纤维素/丝素蛋白共混纤维形态结构的影响[J]. 纺织学报, 2018, 39(06): 13-18.
[15] 李鹏飞 邓桦 马军 刘红斌 刘珍珠. 再生丝素蛋白溶液脱盐新工艺及其应用[J]. 纺织学报, 2018, 39(05): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!