纺织学报 ›› 2021, Vol. 42 ›› Issue (08): 8-16.doi: 10.13475/j.fzxb.20210301109
• 纺织科技新见解学术沙龙专栏:循环再生及生物可降解纤维 • 上一篇 下一篇
WANG Yaning1,2, ZHOU Chufan2, WU Jing1,3(), WANG Huaping2,3
摘要:
异己糖醇是一类碳水化合物衍生二元醇,具有高刚性、手性、亲水性和低毒等特性,在制备新型生物基、生物可降解高分子材料方面具有广阔的发展前景。围绕近年来研究较为充分的全脂肪型及半芳香型异己糖醇基均聚酯与共聚酯,综述了其合成、热学性能、力学性能、生物降解性能及潜在应用,探讨此类聚酯的高效聚合反应工艺及构效关系。异己糖醇结构单元的引入可有效提高聚合物的玻璃化转变温度,以及促进其水解和生物降解性能,在构建具有更高性能的环境友好型聚酯方面具有较高潜力,有望应用于工程塑料、纤维、生物医药等领域。此类生物基聚酯的大规模商业化需进一步开发更高效、温和的聚合反应工艺以攻克其热敏感和热降解问题。
中图分类号:
[1] |
KOLLER M, BRAUNEGG G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion[J]. The EuroBiotech Journal, 2018, 2(2):89.
doi: 10.2478/ebtj-2018-0013 |
[2] |
SINGH N, HUI D, SINGH R, et al. Recycling of plastic solid waste: a state of art review and future applications[J]. Composites Part B: Engineering, 2017, 115(4):409-422.
doi: 10.1016/j.compositesb.2016.09.013 |
[3] |
HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1):50-62.
doi: 10.1002/anie.201805766 |
[4] | EMADIAN S M, ONAY T T, DEMIREL B. Biodegradation of bioplastics in natural environ-ments[J]. Waste Management, 2017, 59(5):26-36. |
[5] |
LI L, LUO Y, LI R, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11):929-937.
doi: 10.1038/s41893-020-0567-9 |
[6] |
ACKERMAN F. Waste management and llimate change[J]. Local Environment, 2000, 5(2):223-229.
doi: 10.1080/13549830050009373 |
[7] |
ROSE M, PALKOVITS R. Isosorbide as a renewable platform chemical for versatile applications:quo vadis[J]. ChemSusChem, 2012, 5(1):167-176.
doi: 10.1002/cssc.201100580 |
[8] |
LICHTENTHALER F W, PETERS S. Carbohydrates as green raw materials for the chemical industry[J]. Comptes Rendus Chimie, 2004, 7(2):65-90.
doi: 10.1016/j.crci.2004.02.002 |
[9] |
WU J, EDUARD P, THIYAGARAJAN S, et al. Isohexide derivatives from renewable resources as chiral building blocks[J]. ChemSusChem, 2011, 4(5):599-603.
doi: 10.1002/cssc.v4.5 |
[10] |
GALBIS J A, GARCIA-MARTIN M D G, PAZ M V D, et al. Synthetic polymers from sugar-based monomers[J]. Chem Rev, 2016, 116(3):1600-1636.
doi: 10.1021/acs.chemrev.5b00242 |
[11] | 虞小三, 王鸣义. 生物基芳香族聚酯的工业化技术及产品应用前景[J]. 石油化工技术与经济, 2019, 35(3):57-61. |
YU Xiaosan, WANG Mingyi. Industrial technology and application prospect of bio-based aromatic poly-esters[J]. Techno-Economics in Petrochemicals, 2019, 35(3):57-61. | |
[12] |
ZAKHAROVA E, MARTINEZ D I A, LEON S, et al. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide[J]. Des Monomers Polym, 2017, 20(1):157-166.
doi: 10.1080/15685551.2016.1231038 |
[13] |
QI J, WU J, CHEN J, et al. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide[J]. Polymer Degradation and Stability, 2019, 160:229-241.
doi: 10.1016/j.polymdegradstab.2018.12.031 |
[14] |
CHATTI S, WEIDNER S M, FILDIER A, et al. Copolyesters of isosorbide, succinic acid, and isophthalic acid: biodegradable, high Tg engineering plastics[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(11):2464-2471.
doi: 10.1002/pola.v51.11 |
[15] |
CAOUTHAR A, ROGER P, TESSIER M, et al. Synjournal and characterization of new polyamides derived from di(4-cyanophenyl)isosorbide[J]. European Polymer Journal, 2007, 43(1):220-230.
doi: 10.1016/j.eurpolymj.2006.08.012 |
[16] |
QIAN W, LIU L, ZHANG Z, et al. Synjournal of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids[J]. Green Chemistry, 2020, 22(8):2488-2497.
doi: 10.1039/D0GC00493F |
[17] |
SAXON D J, LUKE A M, SAJJAD H, et al. Next-generation polymers: isosorbide as a renewable alternative[J]. Progress in Polymer Science, 2020, 101:101196.
doi: 10.1016/j.progpolymsci.2019.101196 |
[18] |
FENOUILLOT F, ROUSSEAU A, COLOMINES G, et al. Polymers from renewable 1,4∶3,6-dianhydro-hexitols (isosorbide, isomannide and isoidide): a review[J]. Progress in Polymer Science, 2010, 35(5):578-622.
doi: 10.1016/j.progpolymsci.2009.10.001 |
[19] |
CECUTTI C, MOULOUNGUI Z, GASET A. Synjournal of new diesters of 1,4∶3,6-dianhydro-D-glucitol by esterification with fatty acid chlorides[J]. Bioresource Technology, 1998, 66(1):63-67.
doi: 10.1016/S0960-8524(97)00082-5 |
[20] |
MUÑOZ-GUERRA S, LAVILLA C, JAPU C, et al. Renewable terephthalate polyesters from carbohydrate-based bicyclic monomers[J]. Green Chem, 2014, 16(4):1716-1739.
doi: 10.1039/C3GC42394H |
[21] |
PARK H S, GONG M S, KNOWLES J C. Synjournal and biocompatibility properties of polyester containing various diacid based on isosorbide[J]. J Biomater Appl, 2012, 27(1):99-109.
doi: 10.1177/0885328212447245 |
[22] |
WU J, THIYAGARAJAN S, GUERRA C F, et al. Isohexide dinitriles: a versatile family of renewable platform chemicals[J]. ChemSusChem, 2017, 10(16):3202-3211.
doi: 10.1002/cssc.201700617 |
[23] |
YOON W J, OH K S, KOO J M, et al. Advanced polymerization and properties of biobased high Tg polyester of isosorbide and 1,4-cyclohexanedicarboxylic acid through in situ acetylation[J]. Macromolecules, 2013, 46(8):2930-2940.
doi: 10.1021/ma4001435 |
[24] | BRAUN D, BERGMANN M. 1,4∶3,6-dianhydrohexite als bausteine für polymere[J]. Advanced Synjournal & Catalysis, 1992, 334(4):298-310. |
[25] |
OKADA M, OKADA Y, AOI K. Synjournal and degradabilities of polyesters from 1,4∶3,6-dianhydrohexitols and aliphatic dicarboxylic acids[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33(16):2813-2820.
doi: 10.1002/pola.1995.080331615 |
[26] |
JUAIS D, NAVES A F, LI C, et al. Isosorbide polyesters from enzymatic catalysis[J]. Macromolecules, 2010, 43(24):10315-10319.
doi: 10.1021/ma1013176 |
[27] |
OKADA M, OKADA Y, TAO A, et al. Biodegradable polymers based on renewable resources: polyesters composed of 1,4∶3,6-dianhydrohexitol and aliphatic dicarboxylic acid units[J]. Journal of Applied Polymer Science, 1996, 62(13):2257-2265.
doi: 10.1002/(ISSN)1097-4628 |
[28] |
OKADA M, TSUNODA K, TACHIKAWA K, et al. Biodegradable polymers based on renewable resources: IV: enzymatic degradation of polyesters composed of 1,4∶3.6-dianhydro-D-glucitol and aliphatic dicarboxylic acid moieties[J]. Journal of Applied Polymer Science, 2000, 77(2):338-346.
doi: 10.1002/(ISSN)1097-4628 |
[29] | KUMAR A, GROSS R A. Candida antartica lipase B catalyzed polycaprolactone synjournal: effects of organic media and temperature[J]. Biomacromolecules, 2000(1):133-138. |
[30] |
XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11 |
[31] |
XU J, GUO B H. Poly(butylene succinate) and its copolymers: research, development and industrializa-tion[J]. Biotechnology Journal, 2010, 5(11):1149-1163.
doi: 10.1002/biot.v5.11 |
[32] | 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016(1):70-77. |
DUAN Rongtao, DONG Xue, LI Defu, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016(1):70-77. | |
[33] | CARETTO A, PASSONI V, BRENNA N, et al. Fully biobased polyesters based on an isosorbide monomer for coil coating applications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):14125-14134. |
[34] |
NOORDOVER B A J, VAN S V G, DUCHATEAU R, et al. Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synjournal and characterization[J]. Biomacromolecules, 2006, 7(12):3406-3416.
doi: 10.1021/bm060713v |
[35] |
KANG H, LI M, TANG Z, et al. Synjournal and characterization of biobased isosorbide-containing copolyesters as shape memory polymers for biomedical applications[J]. J Mater Chem B, 2014, 2(45):7877-7886.
doi: 10.1039/C4TB01304B |
[36] | 郑宁来. 2020年世界PET产销情况[J]. 聚酯工业, 2017, 30(2):4. |
ZHENG Ninglai. World PET production and marketing in 2020[J]. Polyester Industry, 2017, 30(2):4. | |
[37] | GOHIL R M. Properties and strain hardening character of polyethylene terephthalate containing isosorbide[J]. Polymer Engineering and Science, 2009, 49(3):544-553. |
[38] |
DESCAMPS N, FERNANDEZ F, HEIJBOER P, et al. Isothermal crystallization kinetics of poly(ethylene terephthalate) copolymerized with various amounts of isosorbide[J]. Applied Sciences, 2020, 10(3):1046.
doi: 10.3390/app10031046 |
[39] |
LEE S Y, YANG D R, CHANG J W. Design of isosorbide crystallization process as recovery system for poly(ethylene-co-isosorbide) terephthalate production via solubility measurements and crystallization kinetic parameter estimation[J]. Journal of Industrial and Engineering Chemistry, 2020, 92:191-199.
doi: 10.1016/j.jiec.2020.09.004 |
[40] |
STANLEY N, CHENAL T, DELAUNAY T, et al. Bimetallic catalytic systems based on Sb, Ge and Ti for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate)[J]. Polymers, 2017. DOI: 10.3390/polym9110590.
doi: 10.3390/polym9110590 |
[41] |
STANLEY N, CHENAL T, JACQUEL N, et al. Organocatalysts for the synjournal of poly(ethylene terephthalate-co-isosorbide terephthalate): a combined experimental and DFT study[J]. Macromolecular Materials and Engineering, 2019, 304(9) :1900298.
doi: 10.1002/mame.v304.9 |
[42] |
LI X G, SONG G, HUANG M R, et al. Cleaner synjournal and systematical characterization of sustainable poly(isosorbide-co-ethylene terephthalate) by environ-benign and highly active catalysts[J]. Journal of Cleaner Production, 2019, 206:483-497.
doi: 10.1016/j.jclepro.2018.09.046 |
[43] |
SABLONG R, DUCHATEAU R, KONING C E, et al. Incorporation of isosorbide into poly(butylene terephthalate) via solid-state polymerization[J]. Biomacromolecules, 2008, 9(11):3090-3097.
doi: 10.1021/bm800627d |
[44] |
KRICHELDORF H R, BEHNKEN G, SELL M. Influence of isosorbide on glass-transition temperature and crystallinity of poly(butylene terephthalate)[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2007, 44(7-9):679-684.
doi: 10.1080/10601320701351128 |
[45] | CHEN J, WU J, QI J, et al. Systematic study of thermal and (bio)degradable properties of semiaromatic copolyesters based on naturally occurring isosorbide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1):1061. |
[46] |
KOO J M, HWANG S Y, YOON W J, et al. Structural and thermal properties of poly(1,4-cyclohexane dimethylene terephthalate) containing isosorbide[J]. Polymer Chemistry, 2015, 6(39):6973-6986.
doi: 10.1039/C5PY01152C |
[47] |
LEGRAND S, JACQUEL N, AMEDRO H, et al. Synjournal and properties of poly(1,4-cyclohexanedimethylene-co-isosorbide terephthalate), a biobased copolyester with high performances[J]. European Polymer Journal, 2019, 115:22-29.
doi: 10.1016/j.eurpolymj.2019.03.018 |
[48] |
YOON W J, HWANG S Y, KOO J M, et al. Synjournal and characteristics of a biobased high-Tg terpolyester of isosorbide, ethylene glycol, and 1,4-cyclohexane dimethanol: effect of ethylene glycol as a chain linker on polymerization[J]. Macromolecules, 2013, 46(18):7219-7231.
doi: 10.1021/ma4015092 |
[49] |
DUY-NAM P, LEE H, CHOI D, et al. Fabrication of two polyester nanofiber types containing the biobased monomer isosorbide: poly (ethylene glycol 1,4-cyclohexane dimethylene isosorbide terephthalate) and poly (1,4-cyclohexane dimethylene isosorbide terephthalate)[J]. Nanomaterials, 2018, 8(2):56.
doi: 10.3390/nano8020056 |
[50] |
LEE H, KOO J M, SOHN D, et al. High thermal stability and high tensile strength terpolyester nanofibers containing biobased monomer: fabrication and characterization[J]. RSC Advances, 2016, 6(46):40383-40388.
doi: 10.1039/C6RA02852G |
[51] | KHAN M Q, LEE H, KHATRI Z, et al. Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning[J]. Materials Science & Engineering C:Materials for Biological Applications, 2017, 81:247-2451. |
[52] |
KHAN M Q, LEE H, KOO J M, et al. Self-cleaning effect of electrospun poly(1,4-cyclohexanedimethylene isosorbide terephthalate) nanofibers embedded with zinc oxide nanoparticles[J]. Textile Research Journal, 2018, 88(21):2493-2498.
doi: 10.1177/0040517517723026 |
[53] |
WANG X, WANG Q, LIU S, et al. Synjournal and properties of poly(isosorbide 2,5-furandicarboxylate-co- ε-caprolactone) copolyesters[J]. Polymer Testing, 2020, 81:106284.
doi: 10.1016/j.polymertesting.2019.106284 |
[54] |
KASMI N, MAJDOUB M, PAPAGEORGIOU G Z, et al. Synjournal and crystallization of new fully renewable resources-based copolyesters: poly(1,4-cyclohexanedimethanol-co-isosorbide 2,5-furandicar-boxylate)[J]. Polymer Degradation and Stability, 2018, 152:177-190.
doi: 10.1016/j.polymdegradstab.2018.04.009 |
[1] | 李艳艳, 李梦娟, 葛明桥. 有色废弃聚酯的脱色与再利用研究进展[J]. 纺织学报, 2021, 42(08): 17-23. |
[2] | 顾伟文, 王文庆, 魏丽菲, 孙晨颖, 郝聃, 魏建斐, 王锐. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(07): 1-10. |
[3] | 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109. |
[4] | 关震宇, 周文乐, 张玉梅, 王华平. 基于钛镁催化剂合成瓶用聚酯的动力学研究[J]. 纺织学报, 2021, 42(03): 64-70. |
[5] | 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21. |
[6] | 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9. |
[7] | 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6. |
[8] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[9] | 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15. |
[10] | 张凌云, 钱晓明, 邹驰, 邹志伟. SiO2气凝胶/聚酯-聚乙烯双组分纤维复合保暖材料的制备及其性能[J]. 纺织学报, 2020, 41(08): 22-26. |
[11] | 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8. |
[12] | 邢丹丹, 王妮, 刘虎易, 甘学辉, 施楣梧. 防透明聚酯和消光聚酰胺6纤维中TiO2微粒分布的表征方法[J]. 纺织学报, 2020, 41(02): 33-38. |
[13] | 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26-32. |
[14] | 董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020, 41(01): 174-183. |
[15] | 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20. |
|