纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 1-9.doi: 10.13475/j.fzxb.20210506809
• 特约专栏:智能纤维与制品 • 下一篇
方剑1,2(), 任松1,2, 张传雄3, 陈钱1,2, 夏广波1,2, 葛灿1,2
FANG Jian1,2(), REN Song1,2, ZHANG Chuanxiong3, CHEN Qian1,2, XIA Guangbo1,2, GE Can1,2
摘要:
为促进智能纤维材料和智能可穿戴纺织品的发展,对智能可穿戴纺织品用电活性纤维材料进行了全面的陈述。总结了近几年纤维基和织物基智能可穿戴纺织品的发展现状;介绍了电活性纤维材料的定义、常用制备方式、发展过程以及最新研究进展,并对其应用领域进行系统分类与性能探讨,包括应变传感、电致变色、智能调温、能量收集与存储等领域;讨论了目前电活性纤维材料用于智能可穿戴纺织品的发展潜力和面临的问题;最后指出其未来发展方向,以期为电活性纤维材料在智能可穿戴纺织品中的广泛应用提供理论和技术参考。
中图分类号:
[1] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1):1-9. |
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1):1-9.
doi: 10.1177/004051757204200101 |
|
[2] |
CHO Y, PAK S, LEE Y G, et al. Hybrid smart fiber with spontaneous self-charging mechanism for sustainable wearable electronics[J]. Advanced Functional Materials, 2020, 30(13):1908479.
doi: 10.1002/adfm.v30.13 |
[3] | 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1):16-23. |
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional materials and devices, 2020, 26(1):16-23. | |
[4] | 王霁龙, 刘岩, 景媛媛, 等. 纤维基可穿戴电子设备的研究进展[J]. 纺织学报, 2020, 41(12):157-165. |
WANG Jilong, LIU Yan, JING Yuanyuan, et al. Advances in fiber-based wearable electronic devices[J]. Journal of Textile Research, 2020, 41(12):157-165. | |
[5] |
MA W, ZHANG Y, PAN S, et al. Smart fibers for energy conversion and storage[J]. Chemical Society Reviews, 2021, 50(12):7009-7061.
doi: 10.1039/D0CS01603A |
[6] |
GAO Y, XIE C, ZHENG Z. Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges[J]. Advanced Energy Materials, 2020, 11:2002838.
doi: 10.1002/aenm.v11.3 |
[7] | 朱亚楠, 逄增媛, 葛明桥. 金属银导电纤维的制备及性能研究[J]. 化工新型材料, 2020, 48(1):102-105. |
ZHU Yanan, PANG Zengyuan, GE Mingqiao. Preparation and performance analysis of silver conductive fiber[J]. New Chemical Materials, 2020, 48(1):102-105. | |
[8] | 潘俊杰. 纤维基可拉伸柔性器件的制备及其性能研究[D]. 武汉: 武汉纺织大学, 2020:2-24. |
PAN Junjie. Research on the fabrication and properties of fiber based stretchable flexible devices[D]. Wuhan: Wuhan Textile University, 2020:2-24. | |
[9] |
LEE S H, PARK J H, KIM S M. Synjournal, property, and application of carbon nanotube fiber[J]. Journal of the Korean Ceramic Society, 2021, 58(2):148-159.
doi: 10.1007/s43207-020-00106-0 |
[10] | 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9):1-7. |
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9):1-7.
doi: 10.1177/004051757104100101 |
|
[11] | 陆龙喜, 陆烨, 李晔, 等. 新型嵌银纤维织物的抗菌性能研究[J]. 中国消毒学杂志, 2017, 34(3):214-217. |
LU Longxi, LU Ye, LI Ye, et al. Study on antimicrobial property on a new fiber embedded with silver[J]. Chinese Journal of Disinfection, 2017, 34(3):214-217. | |
[12] | 刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1):67-83. |
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fiber in wearable intelligent textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1):67-83. | |
[13] |
LUO M, LI M, JIANG S, et al. Supported growth of inorganic-organic nanoflowers on 3D hierarchically porous nanofibrous membrane for enhanced enzymatic water treatment[J]. Journal of Hazardous Materials, 2020, 381:120947.
doi: 10.1016/j.jhazmat.2019.120947 |
[14] | WANG Y, YOKOTA T, SOMEYA T. Electrospun nanofiber-based soft electronics[J]. NPG Asia Materials, 2021(13):22. |
[15] | FANG J, NIU H, WANG H, et al. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs[J]. Energy & Environmental Science, 2013, 6(7):2196-2202. |
[16] |
LANG C, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016, 7(1):11108.
doi: 10.1038/ncomms11108 |
[17] |
LANG C, FANG J, SHAO H, et al. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens[J]. Nano Energy, 2017, 35:146-153.
doi: 10.1016/j.nanoen.2017.03.038 |
[18] |
WANG Yalong, HAO Ji, HUANG Zhenqi, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126:360-71.
doi: 10.1016/j.carbon.2017.10.034 |
[19] |
ZHANG X, LIN H, SHANG H, et al. Recent advances in functional fiber electronics[J]. SusMat, 2021, 1(1):105-126.
doi: 10.1002/sus2.v1.1 |
[20] |
LI Y, HUANG P, ZHU W, et al. Flexible wire-shaped strain sensor from cotton thread for human health and motion detection[J]. Scientific Reports, 2017, 7:45013.
doi: 10.1038/srep45013 |
[21] |
SONG Y X, XU W M, RONG M Z, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11):1089-1104.
doi: 10.3144/expresspolymlett.2020.88 |
[22] |
RUN W, NAN J, JIAN S, et al. A bi-sheath fiber sensor for giant tensile and torsional displacements[J]. Advanced Functional Materials, 2017, 27(35):1702134.
doi: 10.1002/adfm.v27.35 |
[23] |
REZAEI A, CUTHBERT T J, GHOLAMI M, et al. Application-based production and testing of a core-sheath fiber strain sensor for wearable electronics: feasibility study of using the sensors in measuring tri-axial trunk motion angles[J]. Sensors, 2019, 19(19):4288.
doi: 10.3390/s19194288 |
[24] |
QIN Y, WANG X, WANG Z. Microfibre-nanowire hybrid structure for energy scavenging[J]. Nature, 2008, 451(7180):809-13.
doi: 10.1038/nature06601 |
[25] |
LI Z, WANG Z L. Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor[J]. Advanced Materials, 2011, 23(1):84-89.
doi: 10.1002/adma.v23.1 |
[26] |
EGUSA S, WANG Z, CHOCAT N, et al. Multimaterial piezoelectric fibres[J]. Nature Materials, 2010, 9(8):643-8.
doi: 10.1038/nmat2792 |
[27] |
DU Y, FU C, GAO Y, et al. Carbon fibers/ZnO nanowires hybrid nanogenerator based on an insulating interface barrier[J]. RSC Advances, 2017, 7(35):21452-21458.
doi: 10.1039/C7RA02491F |
[28] |
LU Z, SUO B, CHEN S, et al. A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection[J]. Advanced Functional Materials, 2015, 25(36):5794-8.
doi: 10.1002/adfm.201502646 |
[29] |
DIAS T, MONARAGALA R. Development and analysis of novel electroluminescent yarns and fabrics for localized automotive interior illumination[J]. Textile Research Journal, 2012, 82(11):1164-1176.
doi: 10.1177/0040517511420763 |
[30] |
KONG B K, KIM D H, KIM T W. Significant enhancement of out-coupling efficiency for yarn-based organic light-emitting devices with an organic scattering layer[J]. Nano Energy, 2020, 70:104503.
doi: 10.1016/j.nanoen.2020.104503 |
[31] | FAN H, LI K, LIU X, et al. Continuously processed, long electrochromic fibers with multi-environmental stability[J]. Acs Applied Materials & Interfaces, 2020, 12(25):28451-28460. |
[32] |
SHI X, ZUO Y, ZHAI P, et al. Large-area display textiles integrated with functional systems[J]. Nature, 2021, 591(7849):240-245.
doi: 10.1038/s41586-021-03295-8 |
[33] |
MAO J, CHEN G, REN Z. Thermoelectric cooling materials[J]. Nature Materials, 2021, 20(4):454-461.
doi: 10.1038/s41563-020-00852-w |
[34] |
RUN H, YIDA L, SUNMI S, et al. Emerging materials and strategies for personal thermal management[J]. Advanced Energy Materials, 2020, 10(17):1903921.
doi: 10.1002/aenm.v10.17 |
[35] |
KANAHASHI K, JIANG P, TAKENOBU T. 2D materials for large-area flexible thermoelectric devices[J]. Advanced Energy Materials, 2020, 10(11):1902842.
doi: 10.1002/aenm.v10.11 |
[36] |
TING Z, KAIWEI L, JING Z, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41:35-42.
doi: 10.1016/j.nanoen.2017.09.019 |
[37] |
HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019.DOI: 10.1126/sciadv.aaw0536.
doi: 10.1126/sciadv.aaw0536 |
[38] |
XIAO B C, LIN L Y. Tuning electrolyte configuration and composition for fiber-shaped dye-sensitized solar cell with poly(vinylidene fluoride-co-hexafluoropropylene) gel electrolyte[J]. Journal of Colloid and Interface Science, 2020, 571:126-133.
doi: 10.1016/j.jcis.2020.03.025 |
[39] |
NANNAN Z, JUN C, YI H, et al. A wearable all-solid photovoltaic textile[J]. Advanced Materials, 2016, 28(2):263-9.
doi: 10.1002/adma.201504137 |
[40] |
SANGIORGI N, SANGIORGI A, DESSI A, et al. Improving the efficiency of thin-film fiber-shaped dye-sensitized solar cells by using organic sensitizers[J]. Solar Energy Materials and Solar Cells, 2020, 204:110209.
doi: 10.1016/j.solmat.2019.110209 |
[41] |
KIM J H, HONG S K, YOO S J, et al. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells[J]. Dyes and Pigments, 2021, 185:108855.
doi: 10.1016/j.dyepig.2020.108855 |
[42] |
LI Y, WANG G, AKBARI-SAATLU M, et al. Si and SiGe nanowire for micro-thermoelectric generator: a review of the current state of the art[J]. Frontiers in Materials, 2021.DOI: 10.3389/fmats.2021.611078.
doi: 10.3389/fmats.2021.611078 |
[43] |
TAN G, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials[J]. Chemical Reviews, 2016, 116(19):12123-12149.
doi: 10.1021/acs.chemrev.6b00255 |
[44] |
JIN L, SUN T, ZHAO W, et al. Durable and washable carbon nanotube-based fibers toward wearable thermoelectric generators application[J]. Journal of Power Sources, 2021, 496:229838.
doi: 10.1016/j.jpowsour.2021.229838 |
[45] | XU H, GUO Y, WU B, et al. Highly integrable thermoelectric fiber[J]. ACS Applied Materials & Interfaces, 2020, 12(29):33297-33304. |
[46] |
ZHENG Y, ZHANG Q, JIN W, et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics[J]. Journal of Materials Chemistry A, 2020, 8(6):2984-2994.
doi: 10.1039/C9TA12494B |
[47] |
CHEN H, ZHOU L, FANG Z, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability[J]. Advanced Functional Materials, 2021, 31(19):2011073.
doi: 10.1002/adfm.v31.19 |
[48] |
KIM J H, KIM B, KIM S W, et al. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag[J]. Nanotechnology, 2021, 32(14):145401.
doi: 10.1088/1361-6528/abd57e |
[49] |
KIM H S, PARK I K. Enhanced output power from triboelectric nanogenerators based on electrospun Eu-doped polyvinylidene fluoride nanofibers[J]. Journal of Physics and Chemistry of Solids, 2018, 117:188-193.
doi: 10.1016/j.jpcs.2018.02.045 |
[50] |
DONG K, PENG X, AN J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature Communications, 2020, 11(1):2868.
doi: 10.1038/s41467-020-16642-6 |
[51] |
CHEN L, CHEN C, JIN L, et al. Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor[J]. Energy and Environmental Science, 2021, 14(2):955-964.
doi: 10.1039/D0EE02777D |
[52] | SONG P, XI C, PREMLATHA S, et al. Sword/scabbard-shaped asymmetric all-solid-state supercapacitors based on PPy-MWCNTs-silk and hollow graphene tube for wearable applications[J]. Chemical Engineering Journal, 2021, 411:397-409. |
[53] |
ZANG X, LI L, MENG J, et al. Enhanced zinc storage performance of mixed valent manganese oxide for flexible coaxial fiber zinc-ion battery by limited reduction control[J]. Journal of Materials Science and Technology, 2021, 74:52-59.
doi: 10.1016/j.jmst.2020.10.003 |
[54] |
WANG Y, CHEN C, XIE H, et al. 3D-printed all-fiber li-ion battery toward wearable energy storage[J]. Advanced Functional Materials, 2017, 27(43):1703140.
doi: 10.1002/adfm.v27.43 |
[1] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
[2] | 郑宝平, 蒋高明, 夏风林, 张爱军. 基于模型预测的经编送经动态张力补偿系统设计[J]. 纺织学报, 2021, 42(09): 163-169. |
[3] | 陈足娇, 张睿, 卓雯雯, 张龙琳, 周莉. 可穿戴足底压力监测系统研究进展[J]. 纺织学报, 2021, 42(09): 31-38. |
[4] | 万振凯, 贾敏瑞, 包玮琛. 三维编织复合材料中碳纳米管纱线嵌入位置和数量的优化配置[J]. 纺织学报, 2021, 42(09): 76-82. |
[5] | 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68. |
[6] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[7] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177. |
[8] | 肖渊, 李红英, 李倩, 张威, 杨鹏程. 棉织物/聚二甲基硅氧烷复合介电层柔性压力传感器制备[J]. 纺织学报, 2021, 42(05): 79-83. |
[9] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[10] | 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68. |
[11] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[12] | 张亦可, 贾凡, 桂澄, 晋蕊, 李戎. 碳纳米管/聚偏氟乙烯纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2021, 42(03): 44-49. |
[13] | 盛明非, 王婉宁, 张丽平, 付少海. 可连续化生产的电刺激响应型液晶纤维制备及其性能[J]. 纺织学报, 2021, 42(02): 27-33. |
[14] | 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117. |
[15] | 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58. |
|