纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 180-186.doi: 10.13475/j.fzxb.20200804707

• 综合述评 • 上一篇    下一篇

基于高分子水凝胶的阻燃织物研究与应用进展

于志财1,2, 刘金如1, 何华玲1,2,3(), 马胜男1, 姜会钰1,2   

  1. 1.武汉纺织大学 化学与化工学院, 湖北 武汉 430200
    2.武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
    3.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2020-08-10 修回日期:2021-06-04 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 何华玲
  • 作者简介:于志财(1983—),男,副教授,博士。主要研究方向为功能防护纺织品。
  • 基金资助:
    高性能纤维及制品教育部重点实验室开放基金项目(2232020-G-02);浙江省清洁染整技术研究重点实验室开放基金项目(QJRZ1904)

Research and application progress in fire retardant fabric based on polymeric hydrogel

YU Zhicai1,2, LIU Jinru1, HE Hualing1,2,3(), MA Shengnan1, JIANG Huiyu1,2   

  1. 1. College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2020-08-10 Revised:2021-06-04 Published:2021-09-15 Online:2021-09-27
  • Contact: HE Hualing

摘要:

针对纺织品的易燃问题,基于高分子水凝胶三维网络体系的高吸水性,提出了将高分子水凝胶作为新型阻燃材料应用于纺织品领域的思路。阐述了水凝胶作为新型阻燃材料在灭火过程中吸热冷却、稀释气体和隔绝氧气的阻燃机制;结合相关文献探讨了水凝胶与纺织品相结合制备复合阻燃织物的新型整理技术,证明了基于水凝胶的阻燃复合织物可具备优异的阻燃与隔热性能。最后分析了水凝胶作为阻燃材料在纺织品热防护领域存在的挑战及机遇,认为提高水凝胶与织物的结合牢度、开发自愈合-阻燃水凝胶材料和多功能性阻燃水凝胶织物等是未来的研究方向。

关键词: 高分子水凝胶, 阻燃织物, 灭火机制, 复合整理, 消防服装

Abstract:

In order to improve the fire resistance of textiles, this paper reviews the application of hydrogels as a new type of fire retardant materials, because of the high absorbability of hydrogels with a three-dimensional network. Moreover, the fire-retardant mechanism of hydrogels such as endothermic cooling, gas dilution and oxygen isolation in the process of fire extinguishing was systematically described. According to relevant literature, the novel treatment technology of composite flame-retardant fabric was discussed. It was summarized that flame retardant composite fabrics based on hydrogel have excellent flame-retardant property. This paper critically reviewed and analyzed the challenges and opportunities of hydrogels as flame retardant materials in the field of textile thermal protection. It is found that improving the binding fastness between hydrogels and fabrics, developing self-healing flame retardant hydrogel materials and multifunctional flame retardant hydrogel fabrics call for further research.

Key words: polymeric hydrogel, fire retardant fabric, fire extinguishing mechanism, composite treatment, firefighter protective clothing

中图分类号: 

  • TS102.6

表1

各类阻燃剂的阻燃机制以及阻燃剂的优缺点"

阻燃剂 阻燃机制 优点 缺点
卤系阻燃剂 受热分解产物直接改变火焰中的链增长反应,由此达到阻燃目的 阻燃效率高、成本低、用量少 产生有毒的卤化氢气体,不可降解[13]
磷系阻燃剂 受热分解生成不挥发玻璃层或聚合物脱水炭化形成隔离膜,隔绝氧气 低毒,低卤,用量少,效率高[14] 相容性差,热稳定性差,发烟量大,挥发性高
氮系阻燃剂 受热放出N2、NH3、CO2等气体稀释氧气浓度 毒性低,发烟量少,价格低廉 阻燃效率低,需与其他阻燃剂复合产生协同阻燃效果,比如磷-氮阻燃剂[15,16]
硅系阻燃剂 形成无定形硅保护层屏蔽氧气侵入[17] 阻燃性能优异,耐高温,抗氧化,燃烧速度慢[18] 生产工艺较为复杂,难合成,成本高
硼系阻燃剂 硼酸盐熔化覆盖在可燃物表面,隔绝氧气;燃烧释放结合水,吸热冷却降温;改变热分解途径,抑制可燃性气体生成 阻燃效果良好,抑烟效率高,对聚合物的力学性能影响小 单一的阻燃效果不佳,需与其他阻燃剂协同作用[19]
金属氢氧化物 分解产生水蒸气稀释周围氧气浓度;可燃物表面生成氧化物,阻止燃烧 价格低廉,来源广泛,无毒,稳定性高[20] 添加量需求大,导致基体力学性能差
膨胀型阻燃剂 阻燃剂受热后生成蓬松发泡结构的炭层,阻止可燃物与火源之间的热传导;多孔炭层阻止氧气向可燃物表面扩散 环保高效,价格低廉 相容性差,易使可燃物的力学性能和电学性能降低[21]

图1

水凝胶灭火机制示意图"

图2

直接沉积法示意图"

图3

紫外光引发法"

[1] 任元林, 张悦, 曾倩, 等. 织物阻燃涂层新工艺的研究进展[J]. 纺织学报, 2017, 38(9):168-173.
REN Yuanlin, ZHANG Yue, ZENG Qian, et al. Research progress on new technology of fabric flame retardant coating[J]. Journal of Textile Research, 2017, 38(9):168-173.
[2] WANG B, LI P, XU J J, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Composites, 2020, 194:108038.
[3] 熊驰宇, 史丽敏. 我国纺织品阻燃测试方法及产品标准综述[J]. 山东纺织科技, 2020, 61(1):47-52.
XIONG Chiyu, SHI Limin. Summary of Chinese textile flame retardant test methods and product standards[J]. Shandong Textile Technology, 2020, 61(1):47-52.
[4] WANG D F, ZHONG L, ZHANG C, et al. Eco-friendly synjournal of a highly efficient phosphorus flame retardant based on xylitol and application on cotton fabric[J]. Cellulose, 2019, 26:2123-2138.
doi: 10.1007/s10570-018-2193-5
[5] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(3):100-105.
DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds[J]. Journal of Textile Research, 2020, 41(3):100-105.
[6] XU L J, WANG W, YU D. Durable flame retardant finishing of cotton fabrics with halogen-free rganophosphonate by UV photoinitiated thiol-ene click chemistry[J]. Carbohydrate Polymers, 2017, 172:275-283.
doi: 10.1016/j.carbpol.2017.05.054
[7] HUANG Y S, ZHANG W C, DAI X J, et al. Study on water-based fire extinguishing agent formulations and properties[J]. Procedia Engineering, 2012, 45:649-654.
doi: 10.1016/j.proeng.2012.08.217
[8] HU X M, CHENG W M, SHAO Z L, et al. Synjournal and characterization of temperature sensitive hydrogels[J]. E-Polymers, 2015, 15(5):353-360.
doi: 10.1515/epoly-2015-0157
[9] 邓军, 杨漪, 唐凯. 温敏性水凝胶制备及灭火性能研究[J]. 中国矿业大学学报, 2014, 43(1):1-7.
DENG Jun, YANG Yi, TANG Kai. Research on preparation and fire extinguishing performance of temperature-sensitive hydrogel[J]. Journal of China University of Mining & Technology, 2014, 43(1):1-7.
[10] 党力, 吕智慧. 无机阻燃剂的研究进展[J]. 中国塑料, 2018, 32(9):1-8.
DANG Li, LV Zhihui. Research progress on inorganic flame retardant[J]. China Plastics, 2018, 32(9):1-8.
[11] 庄华炜. 未来纺织品的阻燃趋势[J]. 印染, 2016, 42(3):55-56.
ZHUANG Huawei. The future trend of flame retardant of textiles[J]. China Dyeing & Finishing, 2016, 42(3):55-56.
[12] 滕广远, 陈俊宏. 阻燃剂的现状及发展趋势[J]. 化工时刊, 2018, 32(4):28-32.
TENG Guangyuan, CHEN Junhong. Present situation and development trend of flame retardants[J]. Chemical Industry Times, 2018, 32(4):28-32.
[13] ZHANG F X, GAO W W, JIA Y L, et al. A concise watersolvent synjournal of highly effective, durable, andecofriendly flame-retardant coating on cotton fabrics[J]. Carbohydrate Polymers, 2018, 199:256-265.
doi: 10.1016/j.carbpol.2018.05.085
[14] HUANG S, FENG Y J, LI S N, et al. A novel high whiteness flame retardant for cotton[J]. Polymer Degradation and Stability, 2019, 164:157-166.
doi: 10.1016/j.polymdegradstab.2019.03.014
[15] WANG S, DU X S, JIANG Y X, et al. Synergetic enhancement of mechanical and fire-resistance performance of waterborne polyurethane by introducing two kinds of phosphorus-nitrogen flame retardant[J]. Journal of Colloid and Interface Science, 2019, 537:197-205.
doi: 10.1016/j.jcis.2018.11.003
[16] HAO S, WANG S, SHUANG Y, et al. Flame-retardant performance and mechanism of epoxy thermosets modified with a novel reactive flame retardant containing phosphorus, nitrogen, and sulfur[J]. Polymers for Advanced Technologies, 2018, 29(1):1-10.
[17] EL-HADY M, SHARAF S, FAROUK A. Highly hydrophobic and UV protective properties of cotton fabric using layer by layer self-assembly technique[J]. Cellulose, 2020, 27:1099-1100.
doi: 10.1007/s10570-019-02815-0
[18] 宋远超, 陈国文, 姚慧玲, 等. 硅系阻燃剂作用机理及应用进展[J]. 有机硅材料, 2018, 32(6):496-500.
SONG Yuanchao, CHEN Guowen, YAO Huiling, et al. Progress in mechanism and application of silicon containing flame retardants[J]. Silicone Material, 2018, 32(6):496-500.
[19] 汪帆, 魏兰华. 硼阻燃剂的硏究及应用进展[J]. 广州化工, 2012, 40(18):28-30.
WANG Fan, WEI Lanhua. The progress of research and application of boron-containing flame retardants[J]. Guangzhou Chemical industry, 2012, 40(18):28-30.
[20] 刘伟时, 张铁, 陈珊珊, 等. 硼-氮阻燃剂与氢氧化镁协同阻燃环氧树脂[J]. 高分子材料科学与工程, 2017(5):36-41.
LIU Weishi, ZHANG Tie, CHEN Shanshan, et al. Synergistic flame retardant effect of B-N flame retardant with magnesium hydroxide for epoxy resin[J]. Polymer Materials Science & Engineering, 2017(5):36-41.
[21] LI S S, LIN X H, LI Z G, et al. Hybrid organic-inorganichydrophobic and intumescent flame-retardant coating for cotton fabrics[J]. Composites Communications, 2019, 14:15-20.
doi: 10.1016/j.coco.2019.05.005
[22] SHABANIAN M, HAJIBEYGI M, HEDAYATI K, et al. New ternary PLA/organoclay-hydrogel nanocomposites: design, preparation and study on thermal, combustion and mechanical properties[J]. Materials and Design, 2016, 110:811-820.
doi: 10.1016/j.matdes.2016.08.059
[23] CUI X F, ZHENG W J, ZOU W, et al. Water-retaining, tough and self-healing hydrogels and their uses as fire-resistant materials[J]. Polymer Chemistry, 2019, 10:5151-5158.
doi: 10.1039/C9PY01015G
[24] 贾春雷, 蒋仲安, 唐凯. 温敏性高分子水凝胶制及灭油盘火试验[J]. 消防科学与技术, 2013, 32(4):431-434.
JIA Chunlei, JIANG Zhongan, TANG Kai. Synjournal of a thermosensitive hydrogel and its fire suppressing performance[J]. Fire Protection Science and Technology, 2013, 32(4):431-434.
[25] MYKHALICHKO B, LAVRENYUK H. New water-based fire extinguishant: elaboration, bench-scale tests, and flame extinguishment efficiency determination by cupric chloride aqueous[J]. Fire Safety Journal, 2019, 105:188-195.
doi: 10.1016/j.firesaf.2019.03.005
[26] VYAS P, CHAUDHURI R G, GOPALAKRISHNAN G, et al. Development of novel formulation for high performance fire retardant cementitious mortars[J]. Materials Today: Proceedings, 2020, 28:1245-1253.
doi: 10.1016/j.matpr.2020.03.207
[27] XUE D, HU X M, CHENG W M, et al. Carbon dioxidesealing-based inhibition of coal spontaneous combustion: a temperature-sensitive micro-encapsulated fire-retardant foamed gel[J]. Fuel, 2020, 266:117036.
doi: 10.1016/j.fuel.2020.117036
[28] LI Y S, HU X M, CHENG W M, et al. A novel high-toughness, organic/inorganic double-networkfire-retardant gel for coal-seam with high ground temperature[J]. Fuel, 2020, 263:116779.
doi: 10.1016/j.fuel.2019.116779
[29] JIANG Z W, DOU G L. Preparation and characterization of chitosan grafting hydrogel for mine-fire fighting[J]. ACS Omega, 2020, 5:2303-2309.
doi: 10.1021/acsomega.9b03551
[30] TOREKI W. Degradable or reversible fire-blocking gel: US20070001156[P]. 2007-01-04.
[31] BRIDGEMAN W M. Fire-resistant blanket: US6102128 A[P]. 2000-08-15.
[32] ILLEPERUMA W R K, ROTHEMUND P, SUO Z G, et al. Fire-resistant hydrogel-fabric laminates: a simple concept that may save lives[J]. ACS Applied Materials & Interfaces, 2016, 8(3):2071-2077.
[33] YU Z C, SURYAWANSHI A, HE H L, et al. Preparation and characterisation of fire-resistant PNIPAAm/SA/AgNP thermosensitive networkhydrogels and laminated cotton fabric used in firefighter protective clothing[J]. Cellulose, 2020, 27:5391-5406.
doi: 10.1007/s10570-020-03146-1
[34] LI B, LI D P, YANG Y N, et al. Study of thermal sensitive alginate-Ca2+/poly(N-isopropylacrylamide) hydrogels supported by cotton fabric for wound dressing applications[J]. Textile Research Journal, 2018, 89:801-813.
doi: 10.1177/0040517518755790
[1] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[2] 马亚男, 沈军炎, 骆晓蕾, 张聪, 尚小磊, 刘琳, KRUCINSKA Izabella, 姚菊明. 高效无卤阻燃棉织物的制备及其结构与性能[J]. 纺织学报, 2021, 42(03): 122-129.
[3] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[4] 刘晓涵, 田苗, 王云仪, 李俊. 阻燃织物老化对其拉伸强力影响的研究进展[J]. 纺织学报, 2020, 41(11): 181-188.
[5] 王阳, 程春祖, 姜丽娜, 任元林, 郭迎宾. 紫外光接枝/溶胶-凝胶技术制备耐久性阻燃腈纶织物[J]. 纺织学报, 2020, 41(10): 107-115.
[6] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[7] 李红燕. 单层织物湿态热防护性能测试与分析[J]. 纺织学报, 2009, 30(12): 95-98.
[8] 林鹤鸣;吕娜娜;戚栋明;吴明华. PBA/TiO2接枝复合整理剂及其整理棉织物的抗紫外线性能[J]. 纺织学报, 2009, 30(04): 85-89.
[9] 关芳兰. 纳米氧化锌功能纺织品的制备及其稳定性[J]. 纺织学报, 2009, 30(01): 64-67.
[10] 崔志英;张渭源. 强热流量下耐热阻燃织物的热防护性能[J]. 纺织学报, 2008, 29(9): 56-58.
[11] 王浩;林红;黄晨;陈宇岳. 纳米ZnO分散液的制备及其在棉织物上的应用[J]. 纺织学报, 2006, 27(9): 40-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!