纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 39-45.doi: 10.13475/j.fzxb.20201201707

• 纤维材料 • 上一篇    下一篇

多曲面喷头静电纺射流形成机制与成膜特性

权震震1,2, 王亦涵1, 祖遥1, 覃小红1()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 上海市轻质结构复合材料重点实验室, 上海 201620
  • 收稿日期:2020-12-08 修回日期:2021-05-31 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 覃小红
  • 作者简介:权震震(1989—),男,讲师,博士。主要研究方向为纺织复合材料。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(2232020D-15);中央高校基本科研业务费专项资金项目(2232020A-08);国家自然科学基金项目(51773037);上海市青年科技英才扬帆人才计划项目(18YF1400400);上海市轻质结构复合材料重点实验室开放课题基金项目(2232020A4-01)

Jet formation mechanism and film forming characteristics of multi-curved surface sprayer for electrospinning

QUAN Zhenzhen1,2, WANG Yihan1, ZU Yao1, QIN Xiaohong1()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Shanghai Key Laboratory of Lightweight Composite, Donghua University, Shanghai 201620, China
  • Received:2020-12-08 Revised:2021-05-31 Published:2021-09-15 Online:2021-09-27
  • Contact: QIN Xiaohong

摘要:

为实现微纳米纤维的批量化制备,研究了一种新型多曲面喷头静电纺丝装置。利用ANSYS Maxwell 3D仿真软件模拟多曲面喷头的电场强度分布,探究了自由液面射流形成的理论公式。通过多曲面喷头制备了不同质量分数的聚丙烯腈(PAN)微纳米纤维膜,并借助扫描电子显微镜等对纳米纤维膜的形貌及产量进行表征。结果表明:喷头曲面顶部电场强度最大,高聚物液体易产生波动不稳定现象,当电场力大于液体表面张力时将打破平衡状态,从而产生多股射流;通过该静电纺丝装置获得了光滑无串珠的PAN微纳米纤维,其直径随PAN质量分数的增加而增加,且产量是传统单针头的103倍。

关键词: 静电纺丝, 多曲面喷头, 有限元分析, 射流理论, 微纳米纤维, 电场力, 聚丙烯腈

Abstract:

In order to achieve batch preparation of sub-micro fibers, a new type of multi-curved surface sprayer was studied. ANSYS Maxwell 3D software was used to simulate the electric field intensity distribution of multi-curved surface sprayer, the theoretical formula about free surface jet formation of curved surface was explored, polyacrylonitrile (PAN) microfiber membranes with different mass fractions were prepared by multi-curved surface sprayer, and their morphologies and yields were characterized using electron microscope and other instruments. The results show that the electric field intensity on the top of the sprayer is the largest, which is prone to wave instability and produce multiple jets. The sub-micro fibers obtained by the electrospinning device are smooth without beads, the average diameter increases with the increase of PAN concentration, and the yield is 103 times higher than that of the traditional single needle device.

Key words: electrospinning, multi-curved surface sprayer, finite element analysis, jet theory, sub-micro fibers, electricfield force, polyacrylonitrile

中图分类号: 

  • TS103.7

图1

多曲面喷头静电纺丝装置"

图2

多曲面喷头电场仿真几何模型"

表1

模型中所用材料的属性"

材料 相对介电常数 体积电导率/(S·m-1)
不锈钢 1.00 1.10×106
1.00 3.80×107
PAN 3.92 1.04×10-2

图3

多曲面喷头仿真电场云图"

图4

外界作用下的自由液面不稳定示意图"

图5

曲面几何体自由液面波动示意图"

图6

不同PAN质量分数微纳米纤维的形貌照片(×8 000)及直径分布直方图"

[1] 钟智丽, 王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1):107-110.
ZHONG Zhili, WANG Xungai. Application prospect of nanofibers[J]. Journal of Textile Research, 2006, 27(1):107-110.
[2] AOKI H, MIYOSHI H, YAMAGATA Y. Electrospinning of gelatin nanofiber scaffolds with mild neutral cosolvents for use in tissue engineering[J]. Polymer Journal, 2015, 47(3):267-277.
doi: 10.1038/pj.2014.94
[3] DU H Y, WANG J, SU M Y, et al. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process[J]. Sensors and Actuators B:Chemical, 2012, 166:746-752.
[4] MA L C, WANG J N, LI L, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J]. Acta Polymerica Sinica, 2015 (2):221-227.
[5] ZHU X, WU J, SHAN W, et al. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier[J]. Advanced Functional Materials, 2016, 26(16):2728-2738.
doi: 10.1002/adfm.v26.16
[6] FENG L, LI S H, LI H J, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie-International Edition, 2002, 41(7):1221-1223.
doi: 10.1002/(ISSN)1521-3773
[7] 张朔辰. 纳米材料概述[J]. 云南化工, 2017, 44(9):13-14,17.
ZHANG Shuochen. Summary of nanomaterials[J]. Yunnan Chemical Technology, 2017, 44(9):13-14, 17.
[8] WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
doi: 10.1126/science.1070821
[9] VAZ B S, COSTA J A V, MORAIS M G. Production of polymeric nanofibers with different conditions of the electrospinning process[J]. Materia-Rio De Janeiro, 2017, 22(2):1-5.
[10] WANG J, NAIN A S. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique[J]. Langmuir, 2014, 30(45):13641-13649.
doi: 10.1021/la503011u
[11] WANG L, ZHANG C B, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. Rsc Advances, 2016, 6(107):105988-105995.
doi: 10.1039/C6RA24557A
[12] LANDAU O, ROTHSCHILD A. Fibrous TiO2 gas sensors produced by electrospinning[J]. Journal of Electroceramics, 2015, 35:148-159.
doi: 10.1007/s10832-015-0007-9
[13] 赵伟伟, 汪滨, 王娇娜, 等. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(3):6-12.
ZHAO Weiwei, WANG Bin, WANG Jiaona, et al. Preparation and properties of electrospun polyamide 6 nanofibrous membranes[J]. Journal of Textile Research, 2017, 38(3):6-12.
[14] 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(4):6-11.
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning[J]. Journal of Textile Research, 2017, 38(4):6-11.
[15] 李妮, 熊杰, 薛花. 静电纺参数对射流和纳米纤维形态的影响[J]. 纺织学报, 2010, 31(12):13-18.
LI Ni, XIONG Jie, XUE Hua. Effect of electrospinning parameters on morphologies of nanofibers and jet[J]. Journal of Textile Research, 2010, 31(12):13-18.
[16] 陈威亚, 刘延波, 张泽茹, 等. 多针头静电纺场强改善的有限元分析[J]. 纺织学报, 2014, 35(4):21-25,31.
CHEN Weiya, LIU Yanbo, ZHANG Zeru, et al. Finite element analysis of improvement of field intensity in multi-needle electrospinning[J]. Journal of Textile Research, 2014, 35(4):21-25, 31.
[17] 刘呈坤, 来侃, 孙润军, 等. 多针头静电纺丝工艺过程探讨[J]. 纺织学报, 2012, 33(8):7-10,23.
LIU Chengkun, LAI Kan, SUN Runjun, et al. Investigation on process of multi-needle electrospinning[J]. Journal of Textile Research, 2012, 33(8):7-10, 23.
[18] KIM I G, LEE J H, UNNITHAN A R, et al. A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers[J]. Journal of Industrial and Engineering Chemistry, 2015, 31:251-256.
doi: 10.1016/j.jiec.2015.06.033
[19] AKAMPUMUZA O, GAO H C, ZHANG H N, et al. Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit[J]. Macromolecular Materials and Engineering, 2018, 303(1):1-17.
[20] NIU H T, WANG X G, LIN T. Needleless electrospinning: influences of fibre generator geometry[J]. Journal of The Textile Institute, 2001, 103(7):787-794.
doi: 10.1080/00405000.2011.608498
[21] WANG X, NIU H T, WANG X G, et al. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets[J]. Journal of Nanomaterials, 2009, 49(8):1582-1586.
[22] ALI U, NIU H, AALAM S, et al. Needleless electrospinning using sprocket wheel disk spinneret[J]. Journal of Materials Science, 2017, 52(12):7567-7577.
doi: 10.1007/s10853-017-0989-6
[23] THOPPY N M, BOCHINSKI J R, CLARKE L I, et al. Edge electrospinning for high throughput production of quality nanofibers[J]. Nanotechnology, 2011, 22(34):1-11.
[24] JIANG G J, ZHANG S, QIN X H. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret[J]. Materials Letters, 2013, 106:56-58.
doi: 10.1016/j.matlet.2013.04.084
[25] WEI L, YU H N, JIA L, et al. High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret[J]. Textile Research Journal, 2018, 88(1):80-88.
doi: 10.1177/0040517516677232
[26] LIU Y, DONG L, FAN J, et al. Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning[J]. Journal of Applied Polymer Science, 2011, 120(1):592-598.
doi: 10.1002/app.v120.1
[27] KULA J, LINKA A, TUNAK M, et al. Image analysis of jet structure on electrospinning from free liquid surface[J]. Applied Physics Letters, 2014, 104(24):1-4.
[28] LIN Z Q, KERLE T, BAKER S M, et al. Electric field induced instabilities at liquid/liquid interfaces[J]. Journal of Chemical Physics, 2001, 114(5):2377-2381.
doi: 10.1063/1.1338125
[29] RUSSELL T P, LIN Z Q, SCHAFFER E, et al. Aspects of electrohydrodynamic instabilities at polymer inter-faces[J]. Fibers and Polymers, 2003, 4(1):1-7.
doi: 10.1007/BF02899322
[30] MILOH T, SPIVAK B, YARIN A L. Needleless electrospinning: electrically driven instability and multiple jetting from the free surface of a spherical liquid layer[J]. Journal of Applied Physics, 2009, 106(11):1-8.
[1] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[2] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[3] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[4] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[5] 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89.
[6] 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191.
[7] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[8] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[9] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[10] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[11] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[12] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[13] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[14] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[15] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!