纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 39-45.doi: 10.13475/j.fzxb.20201201707
QUAN Zhenzhen1,2, WANG Yihan1, ZU Yao1, QIN Xiaohong1()
摘要:
为实现微纳米纤维的批量化制备,研究了一种新型多曲面喷头静电纺丝装置。利用ANSYS Maxwell 3D仿真软件模拟多曲面喷头的电场强度分布,探究了自由液面射流形成的理论公式。通过多曲面喷头制备了不同质量分数的聚丙烯腈(PAN)微纳米纤维膜,并借助扫描电子显微镜等对纳米纤维膜的形貌及产量进行表征。结果表明:喷头曲面顶部电场强度最大,高聚物液体易产生波动不稳定现象,当电场力大于液体表面张力时将打破平衡状态,从而产生多股射流;通过该静电纺丝装置获得了光滑无串珠的PAN微纳米纤维,其直径随PAN质量分数的增加而增加,且产量是传统单针头的103倍。
中图分类号:
[1] | 钟智丽, 王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1):107-110. |
ZHONG Zhili, WANG Xungai. Application prospect of nanofibers[J]. Journal of Textile Research, 2006, 27(1):107-110. | |
[2] |
AOKI H, MIYOSHI H, YAMAGATA Y. Electrospinning of gelatin nanofiber scaffolds with mild neutral cosolvents for use in tissue engineering[J]. Polymer Journal, 2015, 47(3):267-277.
doi: 10.1038/pj.2014.94 |
[3] | DU H Y, WANG J, SU M Y, et al. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process[J]. Sensors and Actuators B:Chemical, 2012, 166:746-752. |
[4] | MA L C, WANG J N, LI L, et al. Preparation of PET/CTS antibacterial composites nanofiber membranes used for air filter by electrospinning[J]. Acta Polymerica Sinica, 2015 (2):221-227. |
[5] |
ZHU X, WU J, SHAN W, et al. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier[J]. Advanced Functional Materials, 2016, 26(16):2728-2738.
doi: 10.1002/adfm.v26.16 |
[6] |
FENG L, LI S H, LI H J, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J]. Angewandte Chemie-International Edition, 2002, 41(7):1221-1223.
doi: 10.1002/(ISSN)1521-3773 |
[7] | 张朔辰. 纳米材料概述[J]. 云南化工, 2017, 44(9):13-14,17. |
ZHANG Shuochen. Summary of nanomaterials[J]. Yunnan Chemical Technology, 2017, 44(9):13-14, 17. | |
[8] |
WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
doi: 10.1126/science.1070821 |
[9] | VAZ B S, COSTA J A V, MORAIS M G. Production of polymeric nanofibers with different conditions of the electrospinning process[J]. Materia-Rio De Janeiro, 2017, 22(2):1-5. |
[10] |
WANG J, NAIN A S. Suspended micro/nanofiber hierarchical biological scaffolds fabricated using non-electrospinning STEP technique[J]. Langmuir, 2014, 30(45):13641-13649.
doi: 10.1021/la503011u |
[11] |
WANG L, ZHANG C B, GAO F, et al. Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration[J]. Rsc Advances, 2016, 6(107):105988-105995.
doi: 10.1039/C6RA24557A |
[12] |
LANDAU O, ROTHSCHILD A. Fibrous TiO2 gas sensors produced by electrospinning[J]. Journal of Electroceramics, 2015, 35:148-159.
doi: 10.1007/s10832-015-0007-9 |
[13] | 赵伟伟, 汪滨, 王娇娜, 等. 静电纺聚酰胺6纳米纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(3):6-12. |
ZHAO Weiwei, WANG Bin, WANG Jiaona, et al. Preparation and properties of electrospun polyamide 6 nanofibrous membranes[J]. Journal of Textile Research, 2017, 38(3):6-12. | |
[14] | 冯雪, 汪滨, 王娇娜, 等. 空气过滤用聚丙烯腈静电纺纤维膜的制备及其性能[J]. 纺织学报, 2017, 38(4):6-11. |
FENG Xue, WANG Bin, WANG Jiaona, et al. Preparation and properties of polyacrylonitrile nanofiber membranes used for air filtering by electrospinning[J]. Journal of Textile Research, 2017, 38(4):6-11. | |
[15] | 李妮, 熊杰, 薛花. 静电纺参数对射流和纳米纤维形态的影响[J]. 纺织学报, 2010, 31(12):13-18. |
LI Ni, XIONG Jie, XUE Hua. Effect of electrospinning parameters on morphologies of nanofibers and jet[J]. Journal of Textile Research, 2010, 31(12):13-18. | |
[16] | 陈威亚, 刘延波, 张泽茹, 等. 多针头静电纺场强改善的有限元分析[J]. 纺织学报, 2014, 35(4):21-25,31. |
CHEN Weiya, LIU Yanbo, ZHANG Zeru, et al. Finite element analysis of improvement of field intensity in multi-needle electrospinning[J]. Journal of Textile Research, 2014, 35(4):21-25, 31. | |
[17] | 刘呈坤, 来侃, 孙润军, 等. 多针头静电纺丝工艺过程探讨[J]. 纺织学报, 2012, 33(8):7-10,23. |
LIU Chengkun, LAI Kan, SUN Runjun, et al. Investigation on process of multi-needle electrospinning[J]. Journal of Textile Research, 2012, 33(8):7-10, 23. | |
[18] |
KIM I G, LEE J H, UNNITHAN A R, et al. A comprehensive electric field analysis of cylinder-type multi-nozzle electrospinning system for mass production of nanofibers[J]. Journal of Industrial and Engineering Chemistry, 2015, 31:251-256.
doi: 10.1016/j.jiec.2015.06.033 |
[19] | AKAMPUMUZA O, GAO H C, ZHANG H N, et al. Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit[J]. Macromolecular Materials and Engineering, 2018, 303(1):1-17. |
[20] |
NIU H T, WANG X G, LIN T. Needleless electrospinning: influences of fibre generator geometry[J]. Journal of The Textile Institute, 2001, 103(7):787-794.
doi: 10.1080/00405000.2011.608498 |
[21] | WANG X, NIU H T, WANG X G, et al. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets[J]. Journal of Nanomaterials, 2009, 49(8):1582-1586. |
[22] |
ALI U, NIU H, AALAM S, et al. Needleless electrospinning using sprocket wheel disk spinneret[J]. Journal of Materials Science, 2017, 52(12):7567-7577.
doi: 10.1007/s10853-017-0989-6 |
[23] | THOPPY N M, BOCHINSKI J R, CLARKE L I, et al. Edge electrospinning for high throughput production of quality nanofibers[J]. Nanotechnology, 2011, 22(34):1-11. |
[24] |
JIANG G J, ZHANG S, QIN X H. High throughput of quality nanofibers via one stepped pyramid-shaped spinneret[J]. Materials Letters, 2013, 106:56-58.
doi: 10.1016/j.matlet.2013.04.084 |
[25] |
WEI L, YU H N, JIA L, et al. High-throughput nanofiber produced by needleless electrospinning using a metal dish as the spinneret[J]. Textile Research Journal, 2018, 88(1):80-88.
doi: 10.1177/0040517516677232 |
[26] |
LIU Y, DONG L, FAN J, et al. Effect of applied voltage on diameter and morphology of ultrafine fibers in bubble electrospinning[J]. Journal of Applied Polymer Science, 2011, 120(1):592-598.
doi: 10.1002/app.v120.1 |
[27] | KULA J, LINKA A, TUNAK M, et al. Image analysis of jet structure on electrospinning from free liquid surface[J]. Applied Physics Letters, 2014, 104(24):1-4. |
[28] |
LIN Z Q, KERLE T, BAKER S M, et al. Electric field induced instabilities at liquid/liquid interfaces[J]. Journal of Chemical Physics, 2001, 114(5):2377-2381.
doi: 10.1063/1.1338125 |
[29] |
RUSSELL T P, LIN Z Q, SCHAFFER E, et al. Aspects of electrohydrodynamic instabilities at polymer inter-faces[J]. Fibers and Polymers, 2003, 4(1):1-7.
doi: 10.1007/BF02899322 |
[30] | MILOH T, SPIVAK B, YARIN A L. Needleless electrospinning: electrically driven instability and multiple jetting from the free surface of a spherical liquid layer[J]. Journal of Applied Physics, 2009, 106(11):1-8. |
[1] | 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30. |
[2] | 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51. |
[3] | 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56. |
[4] | 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63. |
[5] | 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89. |
[6] | 周濛濛, 蒋高明, 高哲, 郑培晓. 纬编衬经衬纬管状织物增强复合材料研究进展[J]. 纺织学报, 2021, 42(07): 184-191. |
[7] | 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61. |
[8] | 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50. |
[9] | 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56. |
[10] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[11] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[12] | 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15. |
[13] | 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45. |
[14] | 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30. |
[15] | 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41. |
|