纺织学报 ›› 2021, Vol. 42 ›› Issue (09): 46-51.doi: 10.13475/j.fzxb.20210305607

• 纤维材料 • 上一篇    下一篇

二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能

曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215123
  • 收稿日期:2021-03-15 修回日期:2021-06-16 出版日期:2021-09-15 发布日期:2021-09-27
  • 通讯作者: 郑敏
  • 作者简介:曹元鸣(1996—),男,硕士生。主要研究方向为纳米材料在纺织领域的应用。
  • 基金资助:
    国家创新人才博士后计划项目(BX20190228);江苏省产学研前瞻项目(L211500410)

Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties

CAO Yuanming, ZHENG Mi, LI Yifei, ZHAI Wangyi, LI Liyan, CHANG Zhuningzi, ZHENG Min()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-03-15 Revised:2021-06-16 Published:2021-09-15 Online:2021-09-27
  • Contact: ZHENG Min

摘要:

为制备具有高光热转换效率的纺织材料,采用水热合成法制备了近红外吸收能力强的三维二硫化钼(MoS2)纳米颗粒,然后添加至聚氨酯(PU)纺丝液中,通过静电纺丝方法制备MoS2/PU复合光热纤维膜。借助扫描电子显微镜、透射电子显微镜、X射线粉末衍射仪、傅里叶变换红外光谱仪等对MoS2纳米颗粒及MoS2/PU复合纤维膜的结构和性能进行表征。结果表明:经功率密度为0.8 W/cm2的近红外光照射1 min后,MoS2/PU复合纤维膜的温度上升10.48 ℃,光热效率达到了31.07%,且经长时间反复升降温后热效应无衰减现象,同时在阳光下照射5 min后,复合纤维膜温度上升比黑色纯PU纤维膜高31%;经高温以及模拟汗液浸渍24 h后,复合纤维膜仍可保持原有强力;该MoS2/PU复合纤维膜可将光能有效地转换成热能,并具有较好的力学稳定性。

关键词: 功能材料, 光热转换, 近红外光照射, 静电纺丝, 二硫化钼/聚氨酯复合纤维膜

Abstract:

To prepare textile materials with high photothermal conversion efficiency, three-dimensional MoS2 nanoparticles with strong near-infrared absorption capacity were prepared by hydrothermal synthesis. MoS2 nanoparticles were added to polyurethane (PU) spinning solution, and MoS2/PU composite photothermal fibrous membranes was prepared by electrospinning. The structure and properties of MoS2 nanoparticles and MoS2/PU composite fibrous membranes were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffractometer powder diffraction and fourier transform infrared spectrometer. The results show that after 0.8 W/cm2 near-infrared light irradiation for 1 min, the temperature of MoS2/PU composite fibrous membranes rises by 10.48 ℃, and the photothermal conversion efficiency was increased up to 31.07%. After a long time of repeated temperature rises and falls, the thermal effect did not decay. At the same time, the temperature rose 31% higher than the black PU fibrous membranes under the sunlight irradiation for 5 min. After high temperature treatment and immersion in simulated sweat for 24 hours, the composite fiber membrane still maintain its original strength. In summary, the MoS2/PU composite fibrous membranes have excellent photothermal properties. It can effectively convert light energy into heat energy, and maintain excellent structural stability.

Key words: functional material, photothermal conversion, near-infrared radiation, electrospinning, MoS2/polyurethane composite fibrous membrane

中图分类号: 

  • TS102.5

图1

MoS2纳米颗粒的XRD图谱"

图2

MoS2及MoS2/PU复合纤维膜的微观形貌照片"

图3

MoS2、PU和MoS2/PU复合纤维膜的红外光谱图"

图4

MoS2分散液在近红外光下温度随时间的变化"

图5

MoS2分散液及MoS2/PU复合纤维膜的紫外-可见光谱图"

图6

MoS2/PU复合纤维膜在不同红外光照时间及固定光照时间下的温度变化"

图7

MoS2/PU复合纤维膜在自然日光照射下的温度变化"

图8

MoS2/PU复合纤维膜的应力-应变曲线"

[1] GAO M, PAN Y, JIN Y, et al. A review on the structural dependent optical properties and energy transfer of Mn4+ and multiple ion-codoped complex oxide phosphors[J]. RSC Advances, 2021, 11(2):760-779.
doi: 10.1039/D0RA08550B
[2] HUANG X, HAN S, HUANG W, et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters[J]. Chemical Society Reviews, 2013, 42(1):173-201.
doi: 10.1039/C2CS35288E
[3] TSUCHIKAWA S, KOBORI H. A review of recent application of near infrared spectroscopy to wood science and technology[J]. Journal of Wood Science, 2015, 61(3):213-220.
doi: 10.1007/s10086-015-1467-x
[4] HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters, 2015, 15(1):365-371.
doi: 10.1021/nl5036572
[5] 王敏, 李俊. 发热保暖服装材料的开发现状及发展趋势[J]. 产业用纺织品, 2009, 27(4):6-9.
WANG Min, LI Jun. Current status and development trend of exothermic warmth retention material for garment[J]. Technical Textiles, 2009, 27(4):6-9.
[6] 易领, 张何, 傅昕, 等. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(1):102-109.
YI Ling, ZHANG He, FU Xin, et al. Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics[J]. Journal of Textile Research, 2020, 41(1):102-109.
[7] 陈莉, 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(4):50-54.
CHEN Li, LIU Hao. Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research, 2015, 36(4):50-54.
[8] ZHANG Q, UCHAKER E, CANDELARIA S L, et al. Nanomaterials for energy conversion and storage[J]. Chemical Society Reviews, 2013, 42(7):3127-3171.
doi: 10.1039/c3cs00009e
[9] CONG L, XIE H, LI J. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(12):1601906.
doi: 10.1002/aenm.v7.12
[10] YUN Q, LU Q, ZHANG X, et al. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angewandte Chemie International Edition, 2018, 57(3):626-646.
doi: 10.1002/anie.v57.3
[11] 张琼, 刘翰霖, 李平平, 等. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(2):1-7.
ZHANG Qiong, LIU Hanlin, LI Pingping, et al. Preparation and waterproof and moisture-permeable properties of electrospun polyurethane/silica composite superfine fiber menbrane[J]. Journal of Textile Research, 2019, 40(2):1-7.
doi: 10.1177/004051757004000101
[12] YAN Y, XIA B, GE X, et al. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2013, 5(24):12794-12798.
[13] ZHANG L, GUO Y, IQBAL A, et al. One-step synjournal of the 3D flower-like heterostructure MoS2/CuS nanohybrid for electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2018, 43(3):1251-1260.
doi: 10.1016/j.ijhydene.2017.09.184
[14] 李国庆, 李平平, 刘瀚霖, 等. 聚丙烯腈/聚氨酯透明膜的制备及其性能[J]. 纺织学报, 2020, 41(3):20-25.
LI Guoqing, LI Pingping, LIU Hanlin, et al. Preparation and properties of polyacrylonitrile/polyurethane transparent film[J]. Journal of Textile Research, 2020, 41(3):20-25.
[15] CHEN D, LIU M, YIN L, et al. Single-crystalline MoO3 nanoplates: topochemical synjournal and enhanced ethanol-sensing performance[J]. Journal of Materials Chemistry, 2011, 21(25):9332-9342.
doi: 10.1039/c1jm11447f
[1] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[2] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[3] 陈亚丽, 赵国猛, 任李培, 潘露琪, 陈贝, 肖杏芳, 徐卫林. 芳纶织物基界面光热蒸发材料的制备及其性能[J]. 纺织学报, 2021, 42(08): 115-121.
[4] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
[5] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[6] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[7] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[8] 郭凤云, 过子怡, 高蕾, 郑霖婧. 热粘结复合纤维人造血管支架的制备及其性能[J]. 纺织学报, 2021, 42(06): 46-50.
[9] 代阳, 杨楠楠, 肖渊. 静电纺碳纳米管电阻式柔性湿度传感器的制备及其性能[J]. 纺织学报, 2021, 42(06): 51-56.
[10] 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62.
[11] 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8.
[12] 竺哲欣, 马晓吉, 夏林, 吕汪洋, 陈文兴. 氯离子协同增强十六氯铁酞菁/聚丙烯腈复合纳米纤维光催化降解性能[J]. 纺织学报, 2021, 42(05): 9-15.
[13] 张林, 李至诚, 郑钦元, 董隽, 章寅. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(05): 38-45.
[14] 余美琼, 袁红梅, 陈礼辉. 纤维素/氯化锂/N, N-二甲基乙酰胺溶液的流变性能[J]. 纺织学报, 2021, 42(05): 23-30.
[15] 赵新哲, 王绍霞, 高晶, 王璐. 静电纺胶原/聚环氧乙烷纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(04): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!