纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 34-40.doi: 10.13475/j.fzxb.20201205207

• 纤维材料 • 上一篇    下一篇

星型无卤阻燃剂改性粘胶纤维的制备及其性能

何聚1, 刘晓辉1(), 苏晓伟1, 林生根1, 任元林2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2020-12-18 修回日期:2021-06-01 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 刘晓辉
  • 作者简介:何聚(1995—),男,硕士生。主要研究方向为阻燃纤维素纤维。
  • 基金资助:
    国家重点研发计划项目(2017YFB0309000)

Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants

HE Ju1, LIU Xiaohui1(), SU Xiaowei1, LIN Shenggen1, REN Yuanlin2   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-12-18 Revised:2021-06-01 Published:2021-10-15 Online:2021-10-29
  • Contact: LIU Xiaohui

摘要:

针对粘胶纤维的可燃性带来安全隐患的问题,优选含有六元环结构的六氯环三磷腈作为功能单体,设计合成了一种同时含有磷、氮、硅三元阻燃元素的星型无卤阻燃剂。将该阻燃剂添加到粘胶中,采用湿法纺丝工艺制备了阻燃改性粘胶纤维。借助傅里叶红外光谱仪、X射线光电子能谱仪、热重分析仪、热重-质谱联用系统等对阻燃改性粘胶纤维的结构和性能进行分析。结果表明:改性后粘胶纤维的阻燃性能明显提高,且具有一定的耐洗性;与未改性粘胶纤维相比,其在氮气氛围下800 ℃时的残炭量从12.5%提高到31.2%;在改性粘胶纤维燃烧过程中,可燃性气体释放量明显降低并产生大量膨胀炭层,说明阻燃剂在气相和凝聚相发挥阻燃作用。

关键词: 粘胶纤维, 共混改性, 湿法纺丝, 阻燃剂, 六氯环三磷腈, 热稳定性, 阻燃机制

Abstract:

Aiming at the potential safety hazard caused by the flammability of viscose fibers, phosphonitrilic chloride trimer containing a ring structure was selected as a functional monomer to design a star-shaped halogen-free flame retardant that combines phosphorus, nitrogen, silicon ternary flame retardant elements. The flame retardant was added to the viscose, and then the flame retardant modified viscose fibers was prepared through wetting spinning. The structures and properties of the modified viscose fibers were characterized by means of Fourier infrared spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analyzer, and thermogravimetric-mass spectrometry system. The results show that the flame retardancy of the modified viscose fibers was improved while the fibers maintaining the durability. In nitrogen atmosphere, its char residue rate at 800 ℃ increased from 12.5% to 31.2% compared with the unmodified viscose fibers. During the combustion process of the modified fibers, the release of combustible gas was significantly reduced and abundant expanded carbon layer was produced. The flame retardant operated in condensed phase and gas phase.

Key words: viscose fiber, blending modification, wetting spinning, flame retardant, phosphonitrilic chloride trimer, thermal stability, flame retardant mechanism

中图分类号: 

  • TS102.6

图1

阻燃剂的制备流程图"

图2

阻燃剂的核磁共振氢谱图"

图3

粘胶纤维和阻燃粘胶纤维的红外光谱图"

图4

粘胶纤维、阻燃粘胶纤维和水洗后阻燃粘胶纤维的XPS图"

图5

粘胶纤维、阻燃粘胶纤维和阻燃粘胶纤维燃烧后残炭的扫描电镜照片"

图6

粘胶纤维、阻燃粘胶纤维和水洗后阻燃粘胶纤维在氮气中的TG和DTG曲线"

图7

粘胶纤维、阻燃粘胶纤维和水洗后阻燃粘胶纤维在空气中的TG和DTG曲线"

图8

粘胶纤维和阻燃粘胶纤维的垂直燃烧图"

图9

粘胶纤维和阻燃粘胶纤维的TG-MS图"

图10

阻燃粘胶纤维燃烧后的拉曼光谱图"

[1] LI Ping, WANG Bin, LIU Yanyan, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohydrate Polymers, 2020, 237:116173.
doi: S0144-8617(20)30347-7 pmid: 32241447
[2] MARTA G C, JYOTI B, NANDITA S, et al. Manufacturing and characterization of regenerated cellulose/curcumin based sustainable composites fibers spun from environmentally benign solvents[J]. Industrial Crops and Products, 2018, 111:536-543.
doi: 10.1016/j.indcrop.2017.09.041
[3] LIU Yang, JIANG Zeming, MIAO Jiaojiao, et al. Properties of flame-retardant cellulose fibers with ionic liquid[J]. Fibers and Polymers, 2017, 18(5):915-921.
doi: 10.1007/s12221-017-6922-4
[4] WANG Lihuan, REN Yuanlin, WANG Xiuli, et al. Fire retardant viscose fiber fabric produced by graft polymerization of phosphorus and nitrogen-containing monomer[J]. Cellulose, 2016, 23(4):2689-2700.
doi: 10.1007/s10570-016-0970-6
[5] ALONGI J, CARLETTO R A, BLASIO A D, et al. DNA: a novel, green, natural flame retardant and suppressant for cotton[J]. Journal of Materials Chemistry A, 2013, 1(15):4779-4785.
doi: 10.1039/c3ta00107e
[6] 王欣, 李青山, 狄友波, 等. 阻燃粘胶纤维的研究进展[J]. 高分子通报, 2012(1):96-102.
WANG Xin, LI Qingshan, DI Youbo, et al. Research progress of flame retardant viscose fiber[J]. Polymer Bulletin, 2012(1):96-102.
[7] ZHANG Xiansheng, XIA Yanzhi, YAN Xiong, et al. Efficient suppression of flammability in flame retardant viscose fiber through incorporating with alginate fiber[J]. Materials Letters, 2018, 215:106-109.
doi: 10.1016/j.matlet.2017.12.077
[8] CHEN Li, WANG Yuzhong. A review on flame retardant technology in China: part 1: development of flame retardants[J]. Polymers for Advanced Technologies, 2010, 21(1):1-26.
[9] CHENG Xianwei, GUAN Jinping, KIEKENS P, et al. Preparation and evaluation of an eco-friendly, reactive, and phytic acid-based flame retardant for wool[J]. Reactive and Functional Polymers, 2019, 134:58-66.
doi: 10.1016/j.reactfunctpolym.2018.11.006
[10] LIU Xiaohui, DING Chen, PENG Bo, et al. Synjournal and application of a new, facile, and efficient sorbitol-based finishing agent for durable and flame retardant lyocell fibers[J]. Cellulose, 2020, 27(6):3427-3442.
doi: 10.1007/s10570-019-02894-z
[11] ZHAO Bin, KOLIBABA T J, LAZAR S, et al. Facile two-step phosphazine-based network coating for flame retardant cotton[J]. Cellulose, 2020, 27(7):4123-4132.
doi: 10.1007/s10570-020-03047-3
[12] 全凤玉. 阻燃粘胶的制备及性能研究[D]. 青岛: 青岛大学, 2003: 38-42.
QUAN Fengyu. Research on the preparation and performance of flame retardant viscose[D]. Qingdao: Qingdao University, 2003: 38-42.
[13] BO Caiyi, SHI Zhongyu, HU Lihong, et al. Cardanol derived P, Si and N based precursors to develop flame retardant phenolic foam[J]. Scientific Reports, 2020, 10(1):12080.
doi: 10.1038/s41598-020-69088-7
[14] LIU Xiaohui, ZHANG Qiuyan, PENG Bo, et al. Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid[J]. Journal of Cleaner Production, 2020, 243:118641.
doi: 10.1016/j.jclepro.2019.118641
[15] ZHU Ping, SUI Shuying, WANG Bing, et al. A study of pyrolysis and pyrolysis products of flame-retardant cotton fabrics by DSC, TGA, and PY-GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2004, 71:645-655.
doi: 10.1016/j.jaap.2003.09.005
[16] LI Ximei, ZHANG Keke, SHI Ran, et al. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules[J]. Carbohydrate Polymers, 2017, 176:246-256.
doi: S0144-8617(17)30971-2 pmid: 28927605
[17] IAH B, ZHOU Yuyang, YUEN R K K, et al. Microporous boron based intumescent macrocycle flame retardant for poly(lactic acid) with excellent uv protection[J]. Chemical Engineering Journal, 2020, 402:126209.
doi: 10.1016/j.cej.2020.126209
[1] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[2] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[3] 张超, 蒋之铭, 朱少彤, 张晨曦, 朱平. 超支化磷酰胺在粘胶织物阻燃整理中的应用[J]. 纺织学报, 2021, 42(07): 39-45.
[4] 刘可, 陈爽, 肖茹. 磷杂菲基共聚协效阻燃聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2021, 42(07): 11-18.
[5] 徐凯, 田星, 曹英, 何雅琦, 夏延致, 全凤玉. 阻燃涤纶/海藻酸钙纤维复合材料的制备及其性能[J]. 纺织学报, 2021, 42(07): 19-24.
[6] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[7] 文玉峰, 马晓谱, 盛方园, 朱志国. 微胶囊化膨胀型阻燃剂的制备及其在聚乳酸中的应用[J]. 纺织学报, 2021, 42(06): 71-77.
[8] 骆晓蕾, 李紫嫣, 马亚男, 刘琳, KRUCINSKAIzabella, 姚菊明. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(05): 193-202.
[9] 王瑞丰, 李敏, 田安丽, 王春霞, 付少海. 分散黄6GSL晶型与其分散体热稳定性的关系[J]. 纺织学报, 2021, 42(05): 96-102.
[10] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[11] 杨婷婷, 高远博, 郑毅, 王学利, 何勇. 生物基聚酰胺56纤维的热降解动力学及其热解产物[J]. 纺织学报, 2021, 42(04): 1-7.
[12] 王华清, 闫红强. 生物基三组分自组装涂层构筑及其对苎麻织物的阻燃改性[J]. 纺织学报, 2021, 42(04): 132-138.
[13] 周颖雨, 王锐, 靳高岭, 王文庆. 光诱导表面改性技术在织物阻燃中的应用研究进展[J]. 纺织学报, 2021, 42(03): 181-189.
[14] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[15] 马君志, 葛红, 王冬, 付少海. 溶胶-凝胶法改性阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(01): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!