纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 47-52.doi: 10.13475/j.fzxb.20201103205

• 纤维材料 • 上一篇    下一篇

芳纶纳米纤维改性聚四氟乙烯/聚苯硫醚针刺毡的制备及其性能

刘强飞1,2,3, 吴韶华1,2, 杨吉震1,2,3, 周蓉1,2,3(), 董湘琳4, 宋传波4, 沈照旭4   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学 非织造材料与产业用纺织品创新研究院,山东 青岛 266071
    3.山东省特型非织造材料工程研究中心, 山东 青岛 266071
    4.山东省兴国新力环保科技股份有限公司, 山东 淄博 255000
  • 收稿日期:2020-11-13 修回日期:2021-06-05 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 周蓉
  • 作者简介:刘强飞(1995—),男,硕士生。主要研究方向为高温过滤材料。

Preparation and properties of polytetrafluoroethylene/phenylene sulfide needled felt modified by aramid nanofiber

LIU Qiangfei1,2,3, WU Shaohua1,2, YANG Jizhen1,2,3, ZHOU Rong1,2,3(), DONG Xianglin4, SONG Chuanbo4, SHEN Zhaoxu4   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Industrial Research Institute of Nonwovens & Technical Textiles, Qingdao University, Qingdao, Shandong 266071, China
    3. Shangdong Center for Engineered Nonwovens, Qingdao, Shandong 266071, China
    3. Shandong Xingguo Xinli Environmental Protection Co.,Ltd., Zibo, Shandong 255000, China
  • Received:2020-11-13 Revised:2021-06-05 Published:2021-10-15 Online:2021-10-29
  • Contact: ZHOU Rong

摘要:

为提高耐高温聚四氟乙烯/聚苯硫醚(PTFE/PPS)针刺毡的过滤效率,在其表面涂覆了不同质量分数的芳纶纳米纤维(ANF)分散液得到PTFE/PPS/ANF复合针刺毡,对其微观形貌、元素组成、热稳定性、力学性能、孔径分布、透气性以及过滤性能进行研究。结果表明:芳纶纳米纤维分散液成功引入到PTFE/PPS针刺毡表面后在针刺毡内部呈现微纳结构,其对针刺毡的热稳定性和力学性能几乎没有影响;PTFE/PPS/ANF复合针刺毡对不同粒径的颗粒物过滤效率明显提高,尤其是对于粒径为1.25 μm颗粒物的过滤效率提高了37.9%,阻力仅有较少增加,针刺毡表面的纳米纤维膜在过滤过程中发挥了主要的过滤作用,基本实现了高效低阻效果。

关键词: 芳纶纳米纤维分散液, 针刺毡, 膜效应, 高效低阻, 过滤效率, 聚四氟乙烯, 聚苯硫醚

Abstract:

Novel aramid nanofiber dispersion with different mass fractions was utilized to coat and process traditional high temperature polytetrafluoroethylene/phenylene(PTFE/PPS) needle-punched filter felts to improve their filtration efficiency. The micro-structure, element composition, thermalstability, mechanical properties, pore size distribution, air permeability as well as filtration properties of as-prepared composite filter materials (PTFE/PPS/ANF) were systemically explored and investigated. The results showed that the as-processed needle-punched felts exhibit a micro-nano structure when the aramid nanofiber dispersion was poured onto the needle-punched felts. It was found that the thermal stability and mechanical properties of as-obtained micro-nano composite felts were comparable to the untreated needle-punched felts. Most importantly, the micro-nano composite felts PTFE/PPS/ANF presented obviously enhanced filtration efficiency but slightly increased filtration resistance in comparison with the untreated felts. For instance, the filtration efficiency of the micro-nano composite felts is increased by 37.9% when the particulate maters with the diameter of 1.25 μm were utilized for filtration test. This study demonstrated that the nano-micro structure of composite felts played a major role in the improvement of filtration efficiency, and novel high temperature filter felts with high efficiency and low resistance were successfully achieved.

Key words: aramid nanofibers dispersion, needle-punched filter felt, membrane effect, high filtering efficiency and low filtering resistance, filtration efficiency, polyterafluoroethylene, phenylene sulfide

中图分类号: 

  • TS174

图1

PTFE/PPS/ANF复合针刺毡工艺流程图"

图2

不同ANFs质量分数PTFE/PPS/ANF复合针刺毡的扫描电镜照片"

图3

芳纶纳米分散液涂覆前后针刺毡的元素分布"

图4

不同ANFs质量分数PTFE/PPS/ANF复合针刺毡的TGA和DTG曲线"

表1

不同ANFs质量分数PTFE/PPS/ANF复合针刺毡力学性能指标"

样品编号 弹性模量/MPa 拉伸应变/% 拉伸强度/MPa
M1 69.06±7 43.85±6.0 11.41±1.2
M2 67.15±4.0 42.15±4 11.52±1.5
M3 53.09±5 45.48±3.5 12.36±1.4
M4 51.77±8 38.17±4.8 14.66±2.1

图5

不同ANFs质量分数PTFE/PPS/ANF复合针刺毡的孔径分布及透气性能"

图6

不同ANFs质量分数PTFE/PPS/ANF复合针刺毡的过滤性能"

图7

复合针刺毡的品质因子"

图8

不同放大倍数下过滤后样品的SEM照片"

[1] 黄学亮. 高效低阻空气过滤材料的制备及性能研究[D]. 杭州:浙江理工大学, 2012:2-7.
HUANG Xueliang. The preparation and properties of air filter materials with high filtering efficiency and low filtering resistance [D]. Hangzhou: Zhejiang Sci-Tech University, 2012: 2-7.
[2] 聂雪丽. 基于含尘烟气超低排放用袋式除尘滤料织物构造特性研究及应用[D]. 上海:东华大学, 2018:2-6.
NIE Xueli. Research and application on characteristics of filter media with bag filter based on ultra low emission of dust-laden flue gas[D]. Shanghai:Donghua University, 2018:2-6.
[3] ALMEWALLY A A, EL-SAKHAWY M, ELSHAKANKE-RY M, et al. Technology of nano-fibers: production techniques and properties-critical review[J]. J Text Assoc, 2017, 78:5-14.
[4] LIM C T. Nanofiber technology: current status and emerging developments [J]. Progress in Polymer Science, 2017, 70: l-17.
[5] GUO Yinghe, HE Weidong, LIU Jingxian. Electrospinning polyethylene terephthalate/SiO2nanofiber composite needle felt for enhanced filtration performance[J]. Journal of Applied Polymer Science, 2020, 137(2):11.
[6] WANG Qiannan BAI Yuying, XIE Jianfei, et al. Synjournal and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM2.5 particles[J]. Powder Technology, 2016, 292:54-63.
doi: 10.1016/j.powtec.2016.01.008
[7] CAO Keqin, SIEPERMANN C P, YANG Ming, et al. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites[J]. Advanced Functional Materials, 2013, 23(16):2072-2080.
doi: 10.1002/adfm.v23.16
[8] ZHU Jiaqi, CAO Wenxin, YUE Mingli, et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites[J]. Acs Nano, 2015, 9(3):2489-2501.
doi: 10.1021/nn504927e pmid: 25712334
[9] YANG Ming, CAO Keqin, YEOM Bongjun, et al. Aramid nanofiber-reinforced transparent nano-composites[J]. Journal of Composite Materials, 2015, 49(15):1873-1879.
doi: 10.1177/0021998315579230
[10] LYU Jing, WANG Xinzhi, LIU Lehao, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016, 26(46):8435-8445.
doi: 10.1002/adfm.v26.46
[11] LU Zhaoqing, SI Lianmeng, DANG Wanbin, et al. Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115:321-330.
doi: 10.1016/j.compositesa.2018.10.009
[12] 刘培杰. 芳纶纳米纤维涂覆非织造滤材在高温过滤领域的应用[D]. 上海:东华大学, 2018:16-39.
LIU Peijie. Application of aramid nanofiber coated nonwovens for high temperature filtration[D]. Shanghai:Donghua University, 2018:16-39.
[13] 燕芮. 对位芳纶纳米纤维/熔喷非织造复合过滤材料的制备及性能研究[D]. 上海:东华大学, 2020:28-47.
YAN Rui. Fabrication and characterization of aramid nanofiber/meltblown nonwoven composites for air filtration[D]. Shanghai:Donghua University, 2020:28-47.
[14] YANG Xue, PU Yi, ZHANG Yifei, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. Journal of Hazardous Materials, 2020, 391:11.
[15] 罗峻, 姜逊, 胡剑灿, 等. PPS/PTFE高温过滤材料的DSC定量分析方法研究[J]. 上海纺织科技, 2016, 44(11):45-49.
LUO Jun, JIANG Xun, HU Jiancan et al. Quantitative analysis method of PPS/PTFE heat-resistant filter material by DSC[J]. Shanghai Textile Science & Technology, 2016, 44(11):45-49.
[16] 张洪亭. 芳纶纤维的热降解过程分析[J]. 上海纺织科技, 2012, 40(7):8-10.
ZHANG Hongting. Analysis of thermal degradation process of aramid fibers[J]. Shanghai Textile Science & Technology, 2012, 40(7):8-10.
[1] 刘强飞 吴韶华 杨吉震 周蓉 宋传波 沈照旭. 微纳结构高滤效针刺毡的制备及性能[J]. , 2021, 42(10): 0-0.
[2] 潘宏杰, 杨小兵, 周川, 张守鑫, 常素芹, 罗宏森. 新型冠状病毒防护口罩过滤效率测试标准比对[J]. 纺织学报, 2021, 42(06): 97-105.
[3] 刘朝军, 刘俊杰, 丁伊可, 马少锋, 张秀琴, 张建青. 空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J]. 纺织学报, 2021, 42(05): 31-37.
[4] 马沙沙, 王俊勃, 雒千, 思芳, 杨敏鸽, 陈宁波, 张小峰, 李博. 镍-磷-纳米碳化硅-聚四氟乙烯化学复合镀对纺纱钢丝圈寿命的影响[J]. 纺织学报, 2020, 41(12): 151-156.
[5] 陈千, 廖振, 徐明, 朱亚伟. 等离子体处理对聚四氟乙烯膜粘接性能的影响[J]. 纺织学报, 2020, 41(08): 15-21.
[6] 杨小兵, 程钧, 张守鑫, 姚红, 陆林, 丁松涛. 口罩过滤效率检测用颗粒物粒径的换算和标准比对[J]. 纺织学报, 2020, 41(08): 152-157.
[7] 陈诗萍, 陈旻, 魏岑, 王富军, 王璐. 医用防护服的构效特点及其研发趋势[J]. 纺织学报, 2020, 41(08): 179-187.
[8] 缪特, 张如全, 冯阳. 纳米发泡整理对芳纶过滤材料性能的影响[J]. 纺织学报, 2019, 40(09): 108-113.
[9] 张梦媛, 黄庆林, 黄岩, 肖长发. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(09): 1-7.
[10] 邹志伟, 钱晓明, 钱幺, 赵宝宝, 朵永超. 油剂去除对针刺非织造过滤材料驻极性能的影响[J]. 纺织学报, 2019, 40(06): 79-84.
[11] 胡雪敏, 杨文秀, 李腾. 氧化石墨烯/聚偏二氟乙烯复合纤维过滤膜的制备及其过滤性能[J]. 纺织学报, 2019, 40(04): 32-37.
[12] 贾慧莹, 蒋志青, 马建伟, 江亮, 陈韶娟. 多巴胺氧化自聚改性聚四氟乙烯纤维制备及其性能[J]. 纺织学报, 2019, 40(01): 14-18.
[13] 靳昕怡 王颖 朱志国 刘彦麟 王锐. 复合抑熔滴剂对阻燃聚酯共混物燃烧性能的影响[J]. 纺织学报, 2018, 39(08): 15-21.
[14] 罗平艳 蒋金华 陈南梁 胡淳 崔鹏. 新型氟乙烯乙烯基醚树脂增强膜材料的制备及其力学性能[J]. 纺织学报, 2018, 39(07): 50-54.
[15] 胡泽旭 陈姿晔 相恒学 邱天 汤宇泽 周哲 朱美芳. 石墨烯改性聚苯硫醚纤维光稳定性及其增强机制[J]. 纺织学报, 2017, 38(11): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!