纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 53-60.doi: 10.13475/j.fzxb.20201104208
魏发云1,2, 杨帆3, 王海楼3, 于斌1, 邹学书3, 张伟3()
WEI Fayun1,2, YANG Fan3, WANG Hailou3, YU Bin1, ZOU Xueshu3, ZHANG Wei3()
摘要:
为提高聚乙烯醇(PVA)纤维与水泥基体间的界面强度,采用化学接枝法在PVA纤维表面接枝一层纳米二氧化硅颗粒(SiO2 NPs),制备改性PVA纤维增强水泥基复合材料(PVA-FRCC)。通过三点弯曲试验测试改性前后PVA-FRCC的抗弯强度,并研究纤维铺排方向和层数对水泥基复合材料抗弯性能的影响。结果表明:纤维交叉铺排时,PVA-FRCC的抗弯强度优于纵向和横向铺排,且改性PVA-FRCC的抗弯强度高于未改性PVA-FRCC的;当纤维铺排层数为3层时,改性PVA-FRCC的抗弯强度最好。对PVA-FRCC的弯曲过程进行有限元模拟分析,含有横向铺排纤维的PVA-FRCC断裂失效时,纤维的桥连作用突显。同时,交叉铺排的PVA-FRCC中除横向铺排的纤维承力外,纵向纤维也有一定的承力,且试样失效后无界面损伤。
中图分类号:
[1] |
MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress‐strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804) |
[2] | 俞巧珍, 熊杰. 纤维增强水泥基复合材料研究的若干问题探讨[J]. 浙江工程学院学报, 2002, 19(4):254-259. |
YU Qiaozhen, XIONG Jie. Several key problems in the study of fiber-reinforced cement composite materials[J]. Journal of Zhejiang Sci-Tech University, 2002, 19(4):254-259. | |
[3] |
ONUAGULUCHI O, BANTHIA N . Plant-based natural fiber reinforced cement composites: a review[J]. Cement Concrete Composites, 2016, 68:96-108.
doi: 10.1016/j.cemconcomp.2016.02.014 |
[4] | NISHIWAKI T, SASAKI H, KWON S M . Experimental study on self-healing effect of FRCC with PVA fibers and additives[J]. Journal of Ceramic Processing Research, 2015, 16(1):89-94. |
[5] | LI V C, WU C, WANG S X, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J]. Aci Materials Journal, 2002, 99(5):463-472. |
[6] |
LAWAN I, QIANG L, ZHOU W M, et al. Modifications of hemp twine for use as a fiber in cement composite: effects of hybrid treatments[J]. Cellulose, 2018, 25(3):2009-2020.
doi: 10.1007/s10570-018-1668-8 |
[7] |
TORRES R B, SANTOS J C D, PANZERA T H. Hybrid glass fibre reinforced composites containing silica and cement microparticles based on a design of experiment[J]. Polymer Testing, 2017, 57:87-93.
doi: 10.1016/j.polymertesting.2016.11.012 |
[8] |
SANTOS L, TALEGHANI A D, LI G . Nanosilica-treated shape memory polymer fibers to strengthen wellbore cement[J]. Journal of Petroleum Science and Engineering, 2020, 196:107646.
doi: 10.1016/j.petrol.2020.107646 |
[9] |
FU X, LU W, CHUNG D D L. Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers[J]. Cement and Concrete Research, 1998, 28(2):183-187.
doi: 10.1016/S0008-8846(97)00265-2 |
[10] |
ZHANG W, XU X, WEI F, et al. Influence of dielectric barrier discharge treatment on surface structure of polyoxymethylene fiber and interfacial interaction with cement[J]. Materials, 2018, 11(10):1873.
doi: 10.3390/ma11101873 |
[11] |
CHEN L, SUN W W, CHEN B C, et al. A comparative study on blast-resistant performance of steel and pva fiber-reinforced concrete: experimental and numerical analyses[J]. Crystals, 2020, 10(8):707.
doi: 10.3390/cryst10080707 |
[12] | YANG E H, YANG Y, SHI Y, et al. Use of high volumes of fly ash to improve FRCC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6):620-628. |
[13] |
QING Y, ZENAN Z, DEYU K, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Construction and Building Materials, 2007, 21(3):539-545.
doi: 10.1016/j.conbuildmat.2005.09.001 |
[14] |
WU Z, KHAYAT K H, SHI C . Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete[J]. Cement and Concrete Research, 2017, 95:247-256.
doi: 10.1016/j.cemconres.2017.02.031 |
[15] |
CHAN Y W, CHU S H . Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34(7):1167-1172.
doi: 10.1016/j.cemconres.2003.12.023 |
[16] |
ZHANG W, ZOU X, WEI F, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement[J]. Composites Part B, 2019, 162:500-507.
doi: 10.1016/j.compositesb.2019.01.034 |
[17] | 李贺东, 徐世烺. 超高韧性水泥基复合材料弯曲性能及韧性评价方法[J]. 土木工程学报, 2010, 43(3):33-38. |
LI Hedong, XU Shilang. Research on flexural properties and flexural toughness evaluation method of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2010, 43(3):33-38. | |
[18] | 李永鹏, 何锐, 稽绍华, 等. 界面处理对混杂纤维混凝土弯曲性能的影响[J]. 武汉理工大学学报, 2013, 35(4):27-31. |
LI Yongpeng, HE Rui, JI Shaohua, et al. Impact of enhanced interface treatment on flexural properties of fiber reinforced concrete[J]. Journal of Wuhan University of Technology, 2013, 35(4):27-31. |
[1] | 魏发云 杨帆 王海楼 于斌 邹学书 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及力学性能研究[J]. , 2021, 42(10): 0-0. |
[2] | 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30. |
[3] | 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114. |
[4] | 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183. |
[5] | 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135. |
[6] | 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108. |
[7] | 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22. |
[8] | 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121. |
[9] | 韩健健, 胡勇杰, 胡敏专. 基于纳滤技术的质检萃取液脱色预处理方法[J]. 纺织学报, 2019, 40(09): 136-142. |
[10] | 何俊燕, 李明福, 张劲, 庄志凯, 连文伟. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(05): 1-6. |
[11] | 张琼, 刘翰霖, 李平平, 李妮. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(02): 1-7. |
[12] | 胡勇杰. 纳米二氧化硅/聚醚共聚乙酰胺防水透气涂层织物的研制及其性能[J]. 纺织学报, 2018, 39(10): 104-109. |
[13] | 张小林 黄晨 靳向煜 . 微流纺海藻酸盐基纤维敷料的制备及其性能[J]. 纺织学报, 2018, 39(05): 1-7. |
[14] | 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99. |
[15] | 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67. |
|