纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 53-60.doi: 10.13475/j.fzxb.20201104208

• 纤维材料 • 上一篇    下一篇

改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能

魏发云1,2, 杨帆3, 王海楼3, 于斌1, 邹学书3, 张伟3()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.南通大学 杏林学院,江苏 南通 226236
    3.南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2020-11-19 修回日期:2021-06-03 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 张伟
  • 作者简介:魏发云(1983—),女,副教授,博士。主要研究方向为纤维改性及其应用技术。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303101);国家自然科学基金青年科学基金项目(11802144);江苏高校“青蓝工程”资助项目(苏教师函〔2020〕10号)

Preparation and mechanical properties of cementitious composites reinforced by modified polyvinyl alcohol fiber

WEI Fayun1,2, YANG Fan3, WANG Hailou3, YU Bin1, ZOU Xueshu3, ZHANG Wei3()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Xinglin College, Nantong University, Nantong, Jiangsu 226236, China
    3. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2020-11-19 Revised:2021-06-03 Published:2021-10-15 Online:2021-10-29
  • Contact: ZHANG Wei

摘要:

为提高聚乙烯醇(PVA)纤维与水泥基体间的界面强度,采用化学接枝法在PVA纤维表面接枝一层纳米二氧化硅颗粒(SiO2 NPs),制备改性PVA纤维增强水泥基复合材料(PVA-FRCC)。通过三点弯曲试验测试改性前后PVA-FRCC的抗弯强度,并研究纤维铺排方向和层数对水泥基复合材料抗弯性能的影响。结果表明:纤维交叉铺排时,PVA-FRCC的抗弯强度优于纵向和横向铺排,且改性PVA-FRCC的抗弯强度高于未改性PVA-FRCC的;当纤维铺排层数为3层时,改性PVA-FRCC的抗弯强度最好。对PVA-FRCC的弯曲过程进行有限元模拟分析,含有横向铺排纤维的PVA-FRCC断裂失效时,纤维的桥连作用突显。同时,交叉铺排的PVA-FRCC中除横向铺排的纤维承力外,纵向纤维也有一定的承力,且试样失效后无界面损伤。

关键词: PVA纤维, 二氧化硅, 接枝改性, 水泥基复合材料, 抗弯强度

Abstract:

In order to improve the interface bonding strength between polyvinyl alcohol (PVA)fiber and cement, silica nanoparticles (SiO2 NPs) were grafted on the surface of PVA fiber to prepare modified PVA fiber reinforced cementitious composites (PVA-FRCC). The bending strength of PVA-FRCC was evaluated by three-point bending test, and the influences of fiber arrangement direction and layer number on the bending strength were studied. The results show that the bending strength of PVA-FRCC with cross arrangement is better than that of longitudinal or transverse arrangement. The bending strength of composite reinforced by modified PVA fiber is higher than that with unmodified fiber. The bending strength of modified PVA-FRCC is the best when the number of fiber layers is 3. In the finite element analysis of bending process, when the failure occurs, the transverse fibers in PVA-FRCC present an obvious bridging function. Meanwhile, the longitudinal fibers in the cross-arranged PVA-FRCC could bear a low load while the transverse arranged fibers bear the main load and show no interface damage after failure.

Key words: PVA fiber, silicon dioxide, graft modification, cementitious composite, bending strength

中图分类号: 

  • TU528.58

图1

样品制备示意图"

图2

PVA-FRCC有限元模型"

图3

改性前后PVA纤维的SEM照片"

表1

改性前后PVA纤维表面元素含量"

处理方法 C O Si
未改性 69.53 29.62 0.00
改性后 68.12 29.94 0.99

图4

不同养护时间下PVA-FRCC抗弯强度与纤维横向铺排层数的关系"

图5

不同养护时间下PVA-FRCC抗弯强度与纤维纵向铺排层数的关系"

图6

不同养护时间下PVA-FRCC抗弯强度与纤维交叉铺排层数的关系"

图7

改性前后不同铺排方式的PVA-FRCC的抗弯强度"

图8

抗弯测试后试样的失效形态"

图9

横向铺排PVA-FRCC有限元分析图 单位:MPa。"

图10

交叉铺排PVA-FRCC有限元分析图 单位:MPa。"

[1] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress‐strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826.
doi: 10.1061/(ASCE)0733-9445(1988)114:8(1804)
[2] 俞巧珍, 熊杰. 纤维增强水泥基复合材料研究的若干问题探讨[J]. 浙江工程学院学报, 2002, 19(4):254-259.
YU Qiaozhen, XIONG Jie. Several key problems in the study of fiber-reinforced cement composite materials[J]. Journal of Zhejiang Sci-Tech University, 2002, 19(4):254-259.
[3] ONUAGULUCHI O, BANTHIA N . Plant-based natural fiber reinforced cement composites: a review[J]. Cement Concrete Composites, 2016, 68:96-108.
doi: 10.1016/j.cemconcomp.2016.02.014
[4] NISHIWAKI T, SASAKI H, KWON S M . Experimental study on self-healing effect of FRCC with PVA fibers and additives[J]. Journal of Ceramic Processing Research, 2015, 16(1):89-94.
[5] LI V C, WU C, WANG S X, et al. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC)[J]. Aci Materials Journal, 2002, 99(5):463-472.
[6] LAWAN I, QIANG L, ZHOU W M, et al. Modifications of hemp twine for use as a fiber in cement composite: effects of hybrid treatments[J]. Cellulose, 2018, 25(3):2009-2020.
doi: 10.1007/s10570-018-1668-8
[7] TORRES R B, SANTOS J C D, PANZERA T H. Hybrid glass fibre reinforced composites containing silica and cement microparticles based on a design of experiment[J]. Polymer Testing, 2017, 57:87-93.
doi: 10.1016/j.polymertesting.2016.11.012
[8] SANTOS L, TALEGHANI A D, LI G . Nanosilica-treated shape memory polymer fibers to strengthen wellbore cement[J]. Journal of Petroleum Science and Engineering, 2020, 196:107646.
doi: 10.1016/j.petrol.2020.107646
[9] FU X, LU W, CHUNG D D L. Improving the strain-sensing ability of carbon fiber-reinforced cement by ozone treatment of the fibers[J]. Cement and Concrete Research, 1998, 28(2):183-187.
doi: 10.1016/S0008-8846(97)00265-2
[10] ZHANG W, XU X, WEI F, et al. Influence of dielectric barrier discharge treatment on surface structure of polyoxymethylene fiber and interfacial interaction with cement[J]. Materials, 2018, 11(10):1873.
doi: 10.3390/ma11101873
[11] CHEN L, SUN W W, CHEN B C, et al. A comparative study on blast-resistant performance of steel and pva fiber-reinforced concrete: experimental and numerical analyses[J]. Crystals, 2020, 10(8):707.
doi: 10.3390/cryst10080707
[12] YANG E H, YANG Y, SHI Y, et al. Use of high volumes of fly ash to improve FRCC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6):620-628.
[13] QING Y, ZENAN Z, DEYU K, et al. Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume[J]. Construction and Building Materials, 2007, 21(3):539-545.
doi: 10.1016/j.conbuildmat.2005.09.001
[14] WU Z, KHAYAT K H, SHI C . Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete[J]. Cement and Concrete Research, 2017, 95:247-256.
doi: 10.1016/j.cemconres.2017.02.031
[15] CHAN Y W, CHU S H . Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34(7):1167-1172.
doi: 10.1016/j.cemconres.2003.12.023
[16] ZHANG W, ZOU X, WEI F, et al. Grafting SiO2 nanoparticles on polyvinyl alcohol fibers to enhance the interfacial bonding strength with cement[J]. Composites Part B, 2019, 162:500-507.
doi: 10.1016/j.compositesb.2019.01.034
[17] 李贺东, 徐世烺. 超高韧性水泥基复合材料弯曲性能及韧性评价方法[J]. 土木工程学报, 2010, 43(3):33-38.
LI Hedong, XU Shilang. Research on flexural properties and flexural toughness evaluation method of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2010, 43(3):33-38.
[18] 李永鹏, 何锐, 稽绍华, 等. 界面处理对混杂纤维混凝土弯曲性能的影响[J]. 武汉理工大学学报, 2013, 35(4):27-31.
LI Yongpeng, HE Rui, JI Shaohua, et al. Impact of enhanced interface treatment on flexural properties of fiber reinforced concrete[J]. Journal of Wuhan University of Technology, 2013, 35(4):27-31.
[1] 魏发云 杨帆 王海楼 于斌 邹学书 张伟. 改性聚乙烯醇纤维增强水泥基复合材料制备及力学性能研究[J]. , 2021, 42(10): 0-0.
[2] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[3] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(08): 109-114.
[4] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[5] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[6] 姜兴茂, 刘奇, 郭琳. 二氧化硅包覆银铜纳米颗粒的结构及其抗菌性能[J]. 纺织学报, 2020, 41(11): 102-108.
[7] 段红梅, 汪希铭, 黄子欣, 高晶, 王璐. 纤维基介孔SiO2药物载体的构建及其释药性能[J]. 纺织学报, 2020, 41(07): 15-22.
[8] 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121.
[9] 韩健健, 胡勇杰, 胡敏专. 基于纳滤技术的质检萃取液脱色预处理方法[J]. 纺织学报, 2019, 40(09): 136-142.
[10] 何俊燕, 李明福, 张劲, 庄志凯, 连文伟. 改性菠萝叶纤维结构及其吸附甲醛性能[J]. 纺织学报, 2019, 40(05): 1-6.
[11] 张琼, 刘翰霖, 李平平, 李妮. 聚氨酯/二氧化硅复合超细纤维膜的制备及其防水透湿性能[J]. 纺织学报, 2019, 40(02): 1-7.
[12] 胡勇杰. 纳米二氧化硅/聚醚共聚乙酰胺防水透气涂层织物的研制及其性能[J]. 纺织学报, 2018, 39(10): 104-109.
[13] 张小林 黄晨 靳向煜 . 微流纺海藻酸盐基纤维敷料的制备及其性能[J]. 纺织学报, 2018, 39(05): 1-7.
[14] 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99.
[15] 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!