纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20211003008

• 特邀论文 •    下一篇

生物3D打印用丝素蛋白基凝胶墨水的研究进展

姜雨淋1,2,3, 王卉1,2,3, 张克勤1,2,3()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
    3.苏州大学 纺织行业丝绸功能材料与技术重点实验室, 江苏 苏州 215123
  • 收稿日期:2021-10-01 修回日期:2021-10-15 出版日期:2021-11-15 发布日期:2021-11-29
  • 通讯作者: 张克勤
  • 作者简介:姜雨淋(1996—),女,硕士生。主要研究方向为生物材料。
  • 基金资助:
    国家自然科学基金面上项目(51873134);国家自然科学基金委员会与英国皇家学会合作交流项目(5181102121);江苏省高等学校自然科学研究重大项目(17KJA540002);江苏省自然科学基金面上项目(BK20211317);江苏省丝绸工程重点实验室开放课题(KJS1833)

Research progress of silk fibroin-based hydrogel bioinks for 3D bio-printing

JIANG Yulin1,2,3, WANG Hui1,2,3, ZHANG Keqin1,2,3()   

  1. 1. College of Textiles and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. China National Textile and Apparel Council Key Laboratory of Silk Functional Materials and Technology, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2021-10-01 Revised:2021-10-15 Published:2021-11-15 Online:2021-11-29
  • Contact: ZHANG Keqin

摘要:

丝素蛋白(SF)作为一种天然且古老的蛋白质材料,因其优异的特性成为了生物3D打印墨水材料绝佳的候选者,在生物医学领域受到了广泛的关注。为此,概述了SF在生物3D打印领域的发展,总结了SF材料的物理化学和生物学基本特性,探讨了其作为生物墨水应用于挤出式生物3D打印、光固化生物3D打印和喷墨生物3D打印的要求和可加工性。综述了近年来SF与人工合成聚合物、天然聚合物和无机功能材料复合形成SF基水凝胶墨水在生物3D打印领域中的研究进展,对其所面临的挑战进行了讨论。指出:随着生物3D打印技术的深入发展,通过生物3D打印形成的SF基水凝胶构建体在生物医学领域会有更广阔的应用前景。

关键词: 生物3D打印, 丝素蛋白, 生物墨水, 水凝胶, 生物相容性

Abstract:

As a natural and ancient protein material, silk fibroin (SF) has become an excellent candidate for 3D printing bioinks due to its excellent properties, and has received extensive attention in the biomedical field. The development of SF in the field of biological 3D printing is summarized, the basic physicochemical and biological characteristics of SF materials are mainly summarized, and the requirements and processability of SF materials as bio-inks for extrusion biological 3D printing, photocurable biological 3D printing and inkjet biological 3D printing are discussed. The research progress of SF based hydrogel inks synthesized with artificial polymers, natural polymers and inorganic functional materials in the field of biological 3D printing in recent years is reviewed, and the challenges are discussed. It is pointed out that with the further development of biological 3D printing technology, SF-based hydrogel constructs formed by biological 3D printing will have a broader application prospect in the biomedical field.

Key words: 3D bio-printing, silk fibroin, bioink, hydrogel, biocompatibility

中图分类号: 

  • TS101.4

图1

桑蚕丝的多层次结构"

图2

SF水凝胶的交联方式及其3D打印结构体在组织工程领域的应用"

图3

水凝胶生物墨水在生物3D打印中至关重要的影响因素及其相互关系示意图"

[1] VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013
[2] ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
doi: 10.1016/S0142-9612(02)00353-8
[3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013(4):1-4.
LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building Automation, 2013(4):1-4.
[4] MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785.
doi: 10.1038/nbt.2958
[5] OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329:528-531.
doi: 10.1126/science.1188936
[6] 史建峰, 王涵, 赵蕾, 等. 3D生物打印支架材料的研究进展[J]. 中国药事, 2018, 32(10):1406-1411.
SHI Jianfeng, WANG Han, ZHAO Lei, et al. Research progress of scaffold materials for 3-dimensional bioprinting[J]. Chinese Pharmaceutical Affairs, 2018, 32(10):1406-1411.
[7] KLEBE R J. Cytoscribing a method for micropositioning cells and the construction of 2-dimensional and 3-dimensional synthetic tissues[J]. Experimental Cell Research, 1988, 179(2):362-373.
doi: 10.1016/0014-4827(88)90275-3
[8] YAN Y, WANG X, PAN Y, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique[J]. Biomaterials, 2005, 26(29):5864-5871.
doi: 10.1016/j.biomaterials.2005.02.027
[9] JOSE R R, BROWN J E, POLIDO K E, et al. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing[J]. ACS Biomaterials Science Engineering, 2015, 1(9):780-788.
doi: 10.1021/acsbiomaterials.5b00160
[10] SOMMER M R, SCHAFFNER M, CARNELLI D, et al. 3D printing of hierarchical silk fibroin structures[J]. ACS Appl Mater Interfaces, 2016, 8(50):34677-34685.
doi: 10.1021/acsami.6b11440
[11] RODRIGUEZ M J, BROWN J, GIORDANO J, et al. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments[J]. Biomaterials, 2017, 117:105-115.
doi: 10.1016/j.biomaterials.2016.11.046
[12] KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018, 9(1):1620.
doi: 10.1038/s41467-018-03759-y
[13] FITZPATRICK V, MARTíN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276:120995.
doi: 10.1016/j.biomaterials.2021.120995
[14] LIU B, SONG Y W, JIN L, et al. Silk structure and degradation[J]. Colloids and Surfaces B-Biointerfaces, 2015, 131:122-128.
doi: 10.1016/j.colsurfb.2015.04.040
[15] KAPOOR S, KUNDU S C. Silk protein based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31:17-32.
doi: 10.1016/j.actbio.2015.11.034
[16] FENG Y, LIN J, NIU L, et al. High molecular weight silk fibroin prepared by papain degumming[J]. Polymers, 2020, 12(9):2105.
doi: 10.3390/polym12092105
[17] ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10):1612-1631.
doi: 10.1038/nprot.2011.379
[18] HUANG W W, LING S J, LI C M, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17):6486-6504.
doi: 10.1039/C8CS00187A
[19] QI Yu, WANG Hui, WEI Kai, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017, 18(3):237.
doi: 10.3390/ijms18030237
[20] WANG Y, KIM B J, PENG B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43):21361-21368.
[21] MINOURA N, AIBA S, GOTOH Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices[J]. Journal of Biomedical Materials Research, 1995, 29(10):1215-1221.
doi: 10.1002/(ISSN)1097-4636
[22] PANILAITIS B, ALTMAN G H, CHEN J S, et al. Macrophage responses to silk[J]. Biomaterials, 2003, 24(18):3079-3085.
doi: 10.1016/S0142-9612(03)00158-3
[23] ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials, 2002, 23(20):4131-4141.
doi: 10.1016/S0142-9612(02)00156-4
[24] 史乾坤, 王玉鹏, 张浩, 等. 蛋白质基生物材料的生物医学应用进展[J]. 功能高分子学报, 2021, 34(2):161-171.
SHI Qiankun, WANG Yupeng, ZHANG Hao, et al. Advances in protein-based biomaterials for biomedical applications[J]. Journal of Functional Polymers, 2021, 34(2):161-171.
[25] ZAINUDDIN, LE T T, PARK Y, et al. The behavior of aged regenerated bombyx mori silk fibroin solutions studied by H-1 NMR and rheology[J]. Biomaterials, 2008, 29(32):4268-4274.
doi: 10.1016/j.biomaterials.2008.07.041
[26] RIBEIRO V P, PINA S, OLIVEIRA J M, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Osteochondral Tissue Engineering, 2018, 1058:305-325.
[27] YANG Y, SONG X, LI X, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36):1706539.
doi: 10.1002/adma.v30.36
[28] MALDA J, VISSER J, MELCHELS F P, et al. 25th anniversary article: engineering hydrogels for biofabrication[J]. Advanced Materials, 2013, 25(36):5011-5028.
doi: 10.1002/adma.201302042
[29] DONDERWINKEL I, VAN HEST J C M, CAMERON N R. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polymer Chemistry, 2017, 8(31):4451-4471.
doi: 10.1039/C7PY00826K
[30] AMORIM P A, D'ÁVILA M A, ANAND R, et al. Insights on shear rheology of inks for extrusion-based 3D bioprinting[J]. Bioprinting, 2021, 22:e00129.
doi: 10.1016/j.bprint.2021.e00129
[31] GHOSH S, PARKER S T, WANG X, et al. Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008, 18(13):1883-1889.
doi: 10.1002/adfm.v18:13
[32] KIM S H, KIM D Y, LIM T H, et al. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting[J]. Advances in Experimental Medicine and Biology, 2020, 1249:53-66.
[33] 陈晓敏, 王卉, 吴晨星, 等. 丝素蛋白三维打印墨水材料的交联方式研究进展[J]. 现代化工, 2021, 41(3):36-41.
CHEN Xiaomin, WANG Hui, WU Chenxing, et al. Research progress on cross-linking methods for silk fibroin ink materials in 3D printing[J]. Modern Chemical Industry, 2021, 41(3):36-41.
[34] LIMEM S, CALVERT P, KIM H J, et al. Differentiation of bone marrow stem cells on inkjet printed silk lines[J]. MRS Proceedings, 2006, 950:D04-18.
[35] CUI X, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks[J]. Advanced Healthcare Materials, 2020, 9(15):190164.
[36] WANG Q, HAN G, YAN S, et al. 3D printing of silk fibroin for biomedical applications[J]. Materials, 2019, 12(3):504.
doi: 10.3390/ma12030504
[37] CHIMENE D, LENNOX K K, KAUNAS R R, et al. Advanced bioinks for 3D printing: a materials science perspective[J]. Annals of Biomedical Engineering, 2016, 44(6):2090-2102.
doi: 10.1007/s10439-016-1638-y
[38] SHANJANI Y, PAN C C, ELOMAA L, et al. A novel bioprinting method and system for forming hybrid tissue engineering constructs[J]. Biofabrication, 2015, 7(4):045008.
doi: 10.1088/1758-5090/7/4/045008
[39] LEE K Y, MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews, 2001, 101(7):1869-1879.
doi: 10.1021/cr000108x
[40] EGAWA S, KURITA H, KANNO T, et al. Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing[J]. Advanced Engineering Materials, 2021, 23(9):2100487.
doi: 10.1002/adem.v23.9
[41] LI Z, WU N, CHENG J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration[J]. Theranostics, 2020, 10(11):5090-5106.
doi: 10.7150/thno.44270
[42] LI X H, ZHU X, LIU X Y, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats[J]. Journal of Materials Science Materials in Medicine, 2021, 32(4):31.
doi: 10.1007/s10856-021-06500-2
[43] KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5):1921-1931.
doi: 10.1021/acs.biomac.1c00034
[44] LEE H, SHIN D, SHIN S, et al. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing[J]. Journal of Industrial and Engineering Chemistry, 2020, 89:119-127.
doi: 10.1016/j.jiec.2020.03.034
[45] SANGKERT S, KAMOLMATYAKUL S, GELINSKY M, et al. 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery[J]. Materials Today Communications, 2021, 26:102140.
doi: 10.1016/j.mtcomm.2021.102140
[46] KADUMUDI F B, HASANY M, PIERCHALA M K, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels[J]. Advanced Materials, 2021, 33(35):2100047.
doi: 10.1002/adma.v33.35
[1] 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189.
[2] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
[3] 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184.
[4] 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48.
[5] 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53.
[6] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[7] 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46.
[8] 盛明非, 王婉宁, 张丽平, 付少海. 可连续化生产的电刺激响应型液晶纤维制备及其性能[J]. 纺织学报, 2021, 42(02): 27-33.
[9] 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12.
[10] 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
[11] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[12] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[13] 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71.
[14] 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19.
[15] 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[6] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[7] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[8] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[9] 史途停;陈建勇. 入世后中国纺织业的发展趋势及对策[J]. 纺织学报, 2004, 25(02): 114 -115 .
[10] 冯宪. 漫谈未来服装的发展方向[J]. 纺织学报, 2004, 25(02): 119 -120 .